Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Med ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039249

RESUMEN

For many diseases there are delays in diagnosis due to a lack of objective biomarkers for disease onset. Here, in 41,931 individuals from the United Kingdom Biobank Pharma Proteomics Project, we integrated measurements of ~3,000 plasma proteins with clinical information to derive sparse prediction models for the 10-year incidence of 218 common and rare diseases (81-6,038 cases). We then compared prediction models developed using proteomic data with models developed using either basic clinical information alone or clinical information combined with data from 37 clinical assays. The predictive performance of sparse models including as few as 5 to 20 proteins was superior to the performance of models developed using basic clinical information for 67 pathologically diverse diseases (median delta C-index = 0.07; range = 0.02-0.31). Sparse protein models further outperformed models developed using basic information combined with clinical assay data for 52 diseases, including multiple myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary fibrosis and dilated cardiomyopathy. For multiple myeloma, single-cell RNA sequencing from bone marrow in newly diagnosed patients showed that four of the five predictor proteins were expressed specifically in plasma cells, consistent with the strong predictive power of these proteins. External replication of sparse protein models in the EPIC-Norfolk study showed good generalizability for prediction of the six diseases tested. These findings show that sparse plasma protein signatures, including both disease-specific proteins and protein predictors shared across several diseases, offer clinically useful prediction of common and rare diseases.

2.
Res Sq ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38410465

RESUMEN

Changes in Amyloid-ß (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...