Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Physiol ; 12: 699104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276419

RESUMEN

Saliva protects dental surfaces against cavities (i. e., dental caries), a highly prevalent infectious disease frequently associated with acidogenic Streptococcus mutans. Substantial in vitro evidence supports amylase, a major constituent of saliva, as either protective against caries or supporting caries. We therefore produced mice with targeted deletion of salivary amylase (Amy1) and determined the impact on caries in mice challenged with S. mutans and fed a diet rich in sucrose to promote caries. Total smooth surface and sulcal caries were 2.35-fold and 1.79-fold greater in knockout mice, respectively, plus caries severities were twofold or greater on sulcal and smooth surfaces. In in vitro experiments with samples of whole stimulated saliva, amylase expression did not affect the adherence of S. mutans to saliva-coated hydroxyapatite and slightly increased its aggregation in solution (i.e., oral clearance). Conversely, S. mutans in biofilms formed in saliva with 1% glucose displayed no differences when cultured on polystyrene, but on hydroxyapatite was 40% less with amylase expression, suggesting that recognition by S. mutans of amylase bound to hydroxyapatite suppresses growth. However, this effect was overshadowed in vivo, as the recoveries of S. mutans from dental plaque were similar between both groups of mice, suggesting that amylase expression helps decrease plaque acids from S. mutans that dissolve dental enamel. With amylase deletion, commensal streptococcal species increased from ~75 to 90% of the total oral microbiota, suggesting that amylase may promote higher plaque pH by supporting colonization by base-producing oral commensals. Importantly, collective results indicate that amylase may serve as a biomarker of caries risk.

2.
J Biol Chem ; 290(5): 2993-3008, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512380

RESUMEN

Saliva functions in innate immunity of the oral cavity, protecting against demineralization of teeth (i.e. dental caries), a highly prevalent infectious disease associated with Streptococcus mutans, a pathogen also linked to endocarditis and atheromatous plaques. Gel-forming mucins are a major constituent of saliva. Because Muc19 is the dominant salivary gel-forming mucin in mice, we studied Muc19(-/-) mice for changes in innate immune functions of saliva in interactions with S. mutans. When challenged with S. mutans and a cariogenic diet, total smooth and sulcal surface lesions are more than 2- and 1.6-fold higher in Muc19(-/-) mice compared with wild type, whereas the severity of lesions are up to 6- and 10-fold higher, respectively. Furthermore, the oral microbiota of Muc19(-/-) mice display higher levels of indigenous streptococci. Results emphasize the importance of a single salivary constituent in the innate immune functions of saliva. In vitro studies of S. mutans and Muc19 interactions (i.e. adherence, aggregation, and biofilm formation) demonstrate Muc19 poorly aggregates S. mutans. Nonetheless, aggregation is enhanced upon adding Muc19 to saliva from Muc19(-/-) mice, indicating Muc19 assists in bacterial clearance through formation of heterotypic complexes with salivary constituents that bind S. mutans, thus representing a novel innate immune function for salivary gel-forming mucins. In humans, expression of salivary MUC19 is unclear. We find MUC19 transcripts in salivary glands of seven subjects and demonstrate MUC19 glycoproteins in glandular mucous cells and saliva. Similarities and differences between mice and humans in the expression and functions of salivary gel-forming mucins are discussed.


Asunto(s)
Caries Dental/metabolismo , Caries Dental/microbiología , Inmunidad Innata/fisiología , Mucinas/metabolismo , Saliva/metabolismo , Streptococcus mutans/patogenicidad , Adulto , Animales , Caries Dental/inmunología , Femenino , Humanos , Inmunidad Innata/genética , Masculino , Ratones , Persona de Mediana Edad , Mucinas/genética
3.
J Biol Chem ; 288(21): 14742-55, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23580649

RESUMEN

The autosomal recessive mutation, sld, attenuates mucous cell expression in murine sublingual glands with corresponding effects on mucin 19 (Muc19). We conducted a systematic study including genetic mapping, sequencing, and functional analyses to elucidate a mutation to explain the sld phenotype in neonatal mice. Genetic mapping and gene expression analyses localized the sld mutation within the gene Muc19/Smgc, specifically attenuating Muc19 transcripts, and Muc19 knock-out mice mimic the sld phenotype in neonates. Muc19 transcription is unaffected in sld mice, whereas mRNA stability is markedly decreased. Decreased mRNA stability is not due to a defect in 3'-end processing nor to sequence differences in Muc19 transcripts. Comparative sequencing of the Muc19/Smgc gene identified four candidate intronic mutations within the Muc19 coding region. Minigene splicing assays revealed a novel splicing event in which insertion of two additional repeats within a CA repeat region of intron 53 of the sld genome enhances retention of intron 54, decreasing the levels of correctly spliced transcripts. Moreover, pateamine A, an inhibitor of nonsense-mediated mRNA decay, inhibits degradation of aberrant Muc19 transcripts. The mutation in intron 53 thus enhances aberrant splicing leading to degradation of aberrant transcripts and decreased Muc19 message stability, consistent with the sld phenotype. We propose a working model of the unique splicing event enhanced by the mutation, as well as putative explanations for the gradual but limited increase in Muc19 glycoprotein expression and its restricted localization to subpopulations of mucous cells in sld mice during postnatal gland development.


Asunto(s)
Intrones/fisiología , Modelos Biológicos , Mucinas/biosíntesis , Mutación , Estabilidad del ARN/fisiología , ARN Mensajero/metabolismo , Glándula Sublingual/metabolismo , Empalme Alternativo/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Mucinas/genética , Sistemas de Lectura Abierta/fisiología , ARN Mensajero/genética , Glándula Sublingual/citología , Glándula Sublingual/crecimiento & desarrollo
4.
Biochim Biophys Acta ; 1812(12): 1567-76, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21945428

RESUMEN

Carbonic anhydrase VI (CA VI), encoded by type A transcripts of the gene Car6, is a secretory product of salivary glands and is found in the enamel pellicle. Because higher caries prevalence is associated with lower salivary concentrations of CA VI in humans, we tested whether CA VI protects enamel surfaces from caries induced by Streptococcus mutans, using Car6(-/-) mice, in which salivary CA VI expression is absent. We detected aberrant Car6 type A transcripts in Car6(-/-) mice, likely targets for nonsense-mediated mRNA decay. Expression of the intracellular stress-induced isoform of CA VI encoded by type B transcripts was restricted to parotid and submandibular glands of wild type mice. The salivary function of Car6(-/-) mice was normal as assessed by the histology and protein/glycoprotein profiles of glands, salivary flow rates and protein/glycoprotein compositions of saliva. Surprisingly, total smooth surface caries and sulcal caries in Car6(-/-) mice were more than 6-fold and 2-fold lower than in wild type mice after infection with S. mutans strain UA159. Recoveries of S. mutans and total microbiota from molars were also lower in Car6(-/-) mice. To explore possible mechanisms for increased caries susceptibility, we found no differences in S. mutans adherence to salivary pellicles, in vitro. Interestingly, higher levels of Lactobacillus murinus and an unidentified Streptococcus species were cultivated from the oral microbiota of Car6(-/-) mice. Collective results suggest salivary CA VI may promote caries by modulating the oral microbiota to favor S. mutans colonization and/or by the enzymatic production of acid within plaque.


Asunto(s)
Anhidrasas Carbónicas/genética , Caries Dental/microbiología , Placa Dental/microbiología , Saliva/enzimología , Infecciones Estreptocócicas/microbiología , Streptococcus mutans/aislamiento & purificación , Animales , Adhesión Bacteriana , Anhidrasas Carbónicas/metabolismo , Caries Dental/patología , Durapatita , Femenino , Eliminación de Gen , Masculino , Metagenoma , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Diente Molar/microbiología , Diente Molar/patología , ARN Ribosómico 16S/genética , Glándulas Salivales/microbiología , Infecciones Estreptocócicas/patología , Streptococcus mutans/genética , Transcripción Genética
5.
J Histochem Cytochem ; 58(2): 141-56, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19826070

RESUMEN

The recently identified gene Muc19/Smgc encodes two diverse splice variants, Smgc (submandibular gland protein C) and Muc19 (mucin 19). Muc19 is a member of the large gel-forming mucin family and is an exocrine product of sublingual mucous salivary glands in mice. SMGC is a transiently expressed secretion product of developing rodent submandibular and sublingual glands. Little is known about the expression of Muc19/Smgc gene products in other murine salivary and non-salivary tissues containing the mucous cell phenotype. Muc19 expression was therefore initially assessed by RT-PCR and immunohistochemistry. As a complementary approach, we developed a knockin mouse model, Muc19-EGFP, in which mice express a fusion protein containing the first 69 residues of Muc19 followed by enhanced green fluorescent protein (EGFP) as a marker of Muc19 expression. Results from both approaches are consistent, with preferential Muc19 expression in salivary major and minor mucous glands as well as submucosal glands of the tracheolarynx and bulbourethral glands. Evidence also indicates that individual mucous cells of minor salivary and bulbourethral glands produce another gel-forming mucin in addition to Muc19. We further find tissue expression of full-length Smgc transcripts, which encode for SMGC, and are restricted to neonatal tracheolarynx and all salivary tissues.


Asunto(s)
Mucinas/genética , Mucinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Homocigoto , Masculino , Ratones , Datos de Secuencia Molecular , Mucinas/análisis , Mucinas/química , Especificidad de Órganos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glándulas Salivales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA