Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35951416

RESUMEN

Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against the CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects on CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo, providing a proof of principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging, and arrhythmia management.


Asunto(s)
Sistema de Conducción Cardíaco , Terapia Molecular Dirigida , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Corazón/fisiología , Sistema de Conducción Cardíaco/metabolismo , Humanos , Ratones , Miocardio
2.
Biomaterials ; 281: 121339, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35078042

RESUMEN

Ex vivo programming of T cells can be efficacious but is complex and expensive; therefore, the development of methods to transfect T cells in situ is important. We developed and optimized anti-CD3-targeted lipid nanoparticles (aCD3-LNPs) to deliver tightly packed, reporter gene mRNA specifically to T cells. In vitro, targeted LNPs efficiently delivered mCherry mRNA to Jurkat T cells, and T-cell activation and depletion were associated with aCD3 antibody coating on the surface of LNPs. aCD3-LNPs, but not non-targeted LNPs, accumulated within the spleen following systemic injection, with mCherry and Fluc signals visible within 30 min after injection. At 24 h after aCD3-LNP injection, 2-4% of all splenic T cells and 2-7% of all circulating T cells expressed mCherry, and this was dependent on aCD3 coating density. Targeting and transfection were accompanied by systemic CD25+, OX40+, and CD69+ T-cell activation with temporary CD3e ligand loss and depletion of splenic and circulating subsets. Migration of splenic CD8a+ T cells from the white-pulp to red-pulp, and differentiation from naïve to memory and effector phenotypes, followed upon aCD3-LNP delivery. Additionally, aCD3-LNP injection stimulated the secretion of myeloid-derived chemokines and T-helper cytokines into plasma. Lastly, we administered aCD3-LNPs to tumor bearing mice and found that transfected T cells localized within tumors and tumor-draining lymph nodes following immunotherapy treatment. In summary, we show that CD3-targeted transfection is feasible, yet associated with complex immunological consequences that must be further studied for potential therapeutic applications.


Asunto(s)
Lípidos , Nanopartículas , Animales , Liposomas , Ratones , Fenotipo , ARN Mensajero/genética , Transfección
3.
J Control Release ; 335: 281-289, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34029631

RESUMEN

Early cancer detection can dramatically increase treatment options and survival rates for patients, yet detection of early-stage tumors remains difficult. Here, we demonstrate a two-step strategy to detect and locate cancerous lesions by delivering tumor-activatable minicircle (MC) plasmids encoding a combination of blood-based and imaging reporter genes to tumor cells. We genetically engineered the MCs, under the control of the pan-tumor-specific Survivin promoter, to encode: 1) Gaussia Luciferase (GLuc), a secreted biomarker that can be easily assayed in blood samples; and 2) Herpes Simplex Virus Type 1 Thymidine Kinase mutant (HSV-1 sr39TK), a PET reporter gene that can be used for highly sensitive and quantitative imaging of the tumor location. We evaluated two methods of MC delivery, complexing the MCs with the chemical transfection reagent jetPEI or encapsulating the MCs in extracellular vesicles (EVs) derived from a human cervical cancer HeLa cell line. MCs delivered by EVs or jetPEI yielded significant expression of the reporter genes in cell culture versus MCs delivered without a transfection reagent. Secreted GLuc correlated with HSV-1 sr39TK expression with R2 = 0.9676. MC complexation with jetPEI delivered a larger mass of MC for enhanced transfection, which was crucial for in vivo animal studies, where delivery of MCs via jetPEI resulted in GLuc and HSV-1 sr39TK expression at significantly higher levels than controls. To the best of our knowledge, this is the first report of the PET reporter gene HSV-1 sr39TK delivered via a tumor-activatable MC to tumor cells for an early cancer detection strategy. This work explores solutions to endogenous blood-based biomarker and molecular imaging limitations of early cancer detection strategies and elucidates the delivery capabilities and limitations of EVs.


Asunto(s)
Neoplasias , Timidina Quinasa , Animales , Biomarcadores , Genes Reporteros , Células HeLa , Humanos , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Timidina Quinasa/genética , Transfección
4.
Nat Biotechnol ; 37(5): 531-539, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30886438

RESUMEN

Endogenous biomarkers remain at the forefront of early disease detection efforts, but many lack the sensitivities and specificities necessary to influence disease management. Here, we describe a cell-based in vivo sensor for highly sensitive early cancer detection. We engineer macrophages to produce a synthetic reporter on adopting an M2 tumor-associated metabolic profile by coupling luciferase expression to activation of the arginase-1 promoter. After adoptive transfer in colorectal and breast mouse tumor models, the engineered macrophages migrated to the tumors and activated arginase-1 so that they could be detected by bioluminescence imaging and luciferase measured in the blood. The macrophage sensor detected tumors as small as 25-50 mm3 by blood luciferase measurements, even in the presence of concomitant inflammation, and was more sensitive than clinically used protein and nucleic acid cancer biomarkers. Macrophage sensors also effectively tracked the immunological response in muscle and lung models of inflammation, suggesting the potential utility of this approach in disease states other than cancer.


Asunto(s)
Arginasa/sangre , Detección Precoz del Cáncer , Macrófagos/inmunología , Neoplasias/sangre , Animales , Arginasa/genética , Arginasa/inmunología , Biomarcadores de Tumor/sangre , Ingeniería Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Luciferasas/sangre , Luciferasas/genética , Luciferasas/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA