Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 466: 114977, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38570074

RESUMEN

Apathy is a complex psychiatric syndrome characterised by motivational deficit, emotional blunting and cognitive changes. It occurs alongside a broad range of neurological disorders, but also occurs in otherwise healthy ageing. Despite its clinical prevalence, apathy does not yet have a designated treatment strategy. Generation of a translational animal model of apathy syndrome would facilitate the development of novel treatments. Given the multidimensional nature of apathy, a model cannot be achieved with a single behavioural test. Using a battery of behavioural tests we investigated whether aged rats exhibit behavioural deficits across different domains relevant to apathy. Using the effort for reward and progressive ratio tasks we found that aged male rats (21-27 months) show intact reward motivation. Using the novelty supressed feeding test and position-based object exploration we found aged rats showed increased anxiety-like behaviour inconsistent with emotional blunting. The sucrose preference test and reward learning assay showed intact reward sensitivity and reward-related cognition in aged rats. However, using a bowl-digging version of the probabilistic reversal learning task, we found a deficit in cognitive flexibility in aged rats that did not translate across to a touchscreen version of the task. While these data reveal important changes in cognitive flexibility and anxiety associated with ageing, aged rats do not show deficits across other behavioural domains relevant to apathy. This suggests that aged rats are not a suitable model for age-related apathy syndrome. These findings contrast with previous work in mice, revealing important species differences in behaviours relevant to apathy syndrome in ageing.


Asunto(s)
Envejecimiento , Ansiedad , Apatía , Modelos Animales de Enfermedad , Motivación , Recompensa , Animales , Masculino , Apatía/fisiología , Envejecimiento/fisiología , Motivación/fisiología , Ansiedad/fisiopatología , Ratas , Conducta Animal/fisiología , Aprendizaje Inverso/fisiología , Conducta Exploratoria/fisiología
2.
Cogn Affect Behav Neurosci ; 24(2): 351-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253774

RESUMEN

The rapid serial visual presentation (RSVP) task and continuous performance tasks (CPT) are used to assess attentional impairments in patients with psychiatric and neurological conditions. This study developed a novel touchscreen task for rats based on the structure of a human RSVP task and used pharmacological manipulations to investigate their effects on different performance measures. Normal animals were trained to respond to a target image and withhold responding to distractor images presented within a continuous sequence. In a second version of the task, a false-alarm image was included, so performance could be assessed relative to two types of nontarget distractors. The effects of acute administration of stimulant and nonstimulant treatments for ADHD (amphetamine and atomoxetine) were tested in both tasks. Methylphenidate, ketamine, and nicotine were tested in the first task only. Amphetamine made animals more impulsive and decreased overall accuracy but increased accuracy when the target was presented early in the image sequence. Atomoxetine improved accuracy overall with a specific reduction in false-alarm responses and a shift in the attentional curve reflecting improved accuracy for targets later in the image sequence. However, atomoxetine also slowed responding and increased omissions. Ketamine, nicotine, and methylphenidate had no specific effects at the doses tested. These results suggest that stimulant versus nonstimulant treatments have different effects on attention and impulsive behaviour in this rat version of an RSVP task. These results also suggest that RSVP-like tasks have the potential to be used to study attention in rodents.


Asunto(s)
Anfetamina , Clorhidrato de Atomoxetina , Atención , Estimulantes del Sistema Nervioso Central , Ketamina , Metilfenidato , Nicotina , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/administración & dosificación , Atención/efectos de los fármacos , Atención/fisiología , Masculino , Ratas , Metilfenidato/farmacología , Metilfenidato/administración & dosificación , Nicotina/farmacología , Nicotina/administración & dosificación , Anfetamina/farmacología , Anfetamina/administración & dosificación , Ketamina/farmacología , Ketamina/administración & dosificación , Estimulación Luminosa/métodos , Inhibidores de Captación Adrenérgica/farmacología , Inhibidores de Captación Adrenérgica/administración & dosificación , Aprendizaje Seriado/efectos de los fármacos , Aprendizaje Seriado/fisiología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología , Ratas Sprague-Dawley
3.
Sci Transl Med ; 16(729): eadi2403, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198569

RESUMEN

How rapid-acting antidepressants (RAADs), such as ketamine, induce immediate and sustained improvements in mood in patients with major depressive disorder (MDD) is poorly understood. A core feature of MDD is the prevalence of cognitive processing biases associated with negative affective states, and the alleviation of negative affective biases may be an index of response to drug treatment. Here, we used an affective bias behavioral test in rats, based on an associative learning task, to investigate the effects of RAADs. To generate an affective bias, animals learned to associate two different digging substrates with a food reward in the presence or absence of an affective state manipulation. A choice between the two reward-associated digging substrates was used to quantify the affective bias generated. Acute treatment with the RAADs ketamine, scopolamine, or psilocybin selectively attenuated a negative affective bias in the affective bias test. Low, but not high, doses of ketamine and psilocybin reversed the valence of the negative affective bias 24 hours after RAAD treatment. Only treatment with psilocybin, but not ketamine or scopolamine, led to a positive affective bias that was dependent on new learning and memory formation. The relearning effects of ketamine were dependent on protein synthesis localized to the rat medial prefrontal cortex and could be modulated by cue reactivation, consistent with experience-dependent neural plasticity. These findings suggest a neuropsychological mechanism that may explain both the acute and sustained effects of RAADs, potentially linking their effects on neural plasticity with affective bias modulation in a rodent model.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ratas , Animales , Trastorno Depresivo Mayor/tratamiento farmacológico , Ketamina/farmacología , Psilocibina , Antidepresivos/farmacología , Sesgo , Escopolamina
5.
Artículo en Inglés | MEDLINE | ID: mdl-37955824

RESUMEN

Pharmacological treatments that improve mood were first identified serendipitously, but more than half a century later, how these drugs induce their antidepressant effects remains largely unknown. With the help of animal models, a detailed understanding of their pharmacological targets and acute and chronic effects on brain chemistry and neuronal function has been achieved, but it remains to be elucidated how these effects translate to clinical efficacy. Whilst the field has been dominated by the monoamine and neurotrophic hypotheses, the idea that the maladaptive cognitive process plays a critical role in the development and perpetuation of mood disorders has been discussed since the 1950s. Recently, studies using objective methods to quantify changes in emotional processing found acute effects with conventional antidepressants in both healthy volunteers and patients. These positive effects on emotional processing and cognition occur without a change in the subjective ratings of mood. Building from these studies, behavioural methods for animals that quantify similar cognitive affective processes have been developed. Integrating these behavioural approaches with pharmacology and targeted brain manipulations, a picture is beginning to emerge of the underlying mechanisms that may link the pharmacology of antidepressants, these neuropsychological constructs and clinical efficacy. In this chapter, we discuss findings from animal studies, experimental medicine and patients investigating the neuropsychological effects of antidepressant drugs. We discuss the possible neural circuits that contribute to these effects and discuss whether a neuropsychological model of antidepressant effects could explain the temporal differences in clinical benefits observed with conventional delayed-onset antidepressants versus rapid-acting antidepressants.

6.
Genes Brain Behav ; 22(6): e12865, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37705179

RESUMEN

Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.


Asunto(s)
Guanilato-Quinasas , Aprendizaje , Proteínas de la Membrana , Trastornos Mentales , Humanos , Animales , Ratas , Proteínas de la Membrana/genética , Guanilato-Quinasas/genética , Cognición , Masculino , Femenino , Animales no Consanguíneos , Heterocigoto , Trastornos Mentales/genética , Hipocampo/fisiopatología
7.
Psychopharmacology (Berl) ; 240(11): 2271-2284, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37474757

RESUMEN

RATIONALE: Motivational deficits are a common symptom shared across multiple psychiatric and neurodegenerative disorders. Effort-based decision-making tasks are a translatable method for assessing motivational state. Much of the preclinical validation of the task derives from acute pharmacological manipulations in rats. However, mice currently offer a greater genetic toolkit to study risk genes and phenotypic models. Despite this, there is limited characterisation of their behaviour in this type of motivation task. OBJECTIVES: Here, we investigate the effort for reward (EfR) task as a measure of motivational state in mice using drugs previously shown to modulate effort-based decision-making in rats and humans. METHOD: Using male C57bl/6j mice, we test the effects of drugs which modulate DA transmission. We also test the effects of CP101-606 which does not act directly via DA modulation but has been shown to exert beneficial effects on motivational state. Finally, we test the sensitivity of the task to a chronic corticosterone (CORT) treatment. RESULTS: Amphetamine, methylphenidate, and CP101606 in mice increased high-effort responses for high-value reward, while administration of haloperidol decreased high-effort responses. Surprisingly, tetrabenazine had no effect at the doses tested. Chronic, low-dose CORT consumption did not alter task performance. CONCLUSION: These data suggest that the EfR task is sensitive to acute dopaminergic modulation and NR2B selective antagonism in mice. However, it may lack sensitivity to non-acute phenotypic models. Further work is required to demonstrate the utility of the task in this context.


Asunto(s)
Motivación , Recompensa , Humanos , Ratones , Ratas , Masculino , Animales , Dopamina/farmacología , Haloperidol/farmacología , Tetrabenazina/farmacología , Toma de Decisiones/fisiología
9.
Hippocampus ; 33(6): 730-744, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971428

RESUMEN

Pyramidal cells in hippocampal area CA2 have synaptic properties that are distinct from the other CA subregions. Notably, this includes a lack of typical long-term potentiation of stratum radiatum synapses. CA2 neurons express high levels of several known and potential regulators of metabotropic glutamate receptor (mGluR)-dependent signaling including Striatal-Enriched Tyrosine Phosphatase (STEP) and several Regulator of G-protein Signaling (RGS) proteins, yet the functions of these proteins in regulating mGluR-dependent synaptic plasticity in CA2 are completely unknown. Thus, the aim of this study was to examine mGluR-dependent synaptic depression and to determine whether STEP and the RGS proteins RGS4 and RGS14 are involved. Using whole cell voltage-clamp recordings from mouse pyramidal cells, we found that mGluR agonist-induced long-term depression (mGluR-LTD) is more pronounced in CA2 compared with that observed in CA1. This mGluR-LTD in CA2 was found to be protein synthesis and STEP dependent, suggesting that CA2 mGluR-LTD shares mechanistic processes with those seen in CA1, but in addition, RGS14, but not RGS4, was essential for mGluR-LTD in CA2. In addition, we found that exogenous application of STEP could rescue mGluR-LTD in RGS14 KO slices. Supporting a role for CA2 synaptic plasticity in social cognition, we found that RGS14 KO mice had impaired social recognition memory as assessed in a social discrimination task. These results highlight possible roles for mGluRs, RGS14, and STEP in CA2-dependent behaviors, perhaps by biasing the dominant form of synaptic plasticity away from LTP and toward LTD in CA2.


Asunto(s)
Proteínas RGS , Receptores de Glutamato Metabotrópico , Animales , Ratones , Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Plasticidad Neuronal , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
10.
Curr Biol ; 33(7): 1220-1236.e4, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898372

RESUMEN

Short-term memory enables incorporation of recent experience into subsequent decision-making. This processing recruits both the prefrontal cortex and hippocampus, where neurons encode task cues, rules, and outcomes. However, precisely which information is carried when, and by which neurons, remains unclear. Using population decoding of activity in rat medial prefrontal cortex (mPFC) and dorsal hippocampal CA1, we confirm that mPFC populations lead in maintaining sample information across delays of an operant non-match to sample task, despite individual neurons firing only transiently. During sample encoding, distinct mPFC subpopulations joined distributed CA1-mPFC cell assemblies hallmarked by 4-5 Hz rhythmic modulation; CA1-mPFC assemblies re-emerged during choice episodes but were not 4-5 Hz modulated. Delay-dependent errors arose when attenuated rhythmic assembly activity heralded collapse of sustained mPFC encoding. Our results map component processes of memory-guided decisions onto heterogeneous CA1-mPFC subpopulations and the dynamics of physiologically distinct, distributed cell assemblies.


Asunto(s)
Hipocampo , Recuerdo Mental , Ratas , Animales , Hipocampo/fisiología , Memoria a Corto Plazo , Corteza Prefrontal/fisiología , Neuronas/fisiología
11.
Psychol Med ; 53(10): 4324-4332, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35545891

RESUMEN

BACKGROUND: Anhedonia - a diminished interest or pleasure in activities - is a core self-reported symptom of depression which is poorly understood and often resistant to conventional antidepressants. This symptom may occur due to dysfunction in one or more sub-components of reward processing: motivation, consummatory experience and/or learning. However, the precise impairments remain elusive. Dissociating these components (ideally, using cross-species measures) and relating them to the subjective experience of anhedonia is critical as it may benefit fundamental biology research and novel drug development. METHODS: Using a battery of behavioural tasks based on rodent assays, we examined reward motivation (Joystick-Operated Runway Task, JORT; and Effort-Expenditure for Rewards Task, EEfRT) and reward sensitivity (Sweet Taste Test) in a non-clinical population who scored high (N = 32) or low (N = 34) on an anhedonia questionnaire (Snaith-Hamilton Pleasure Scale). RESULTS: Compared to the low anhedonia group, the high anhedonia group displayed marginal impairments in effort-based decision-making (EEfRT) and reduced reward sensitivity (Sweet Taste Test). However, we found no evidence of a difference between groups in physical effort exerted for reward (JORT). Interestingly, whilst the EEfRT and Sweet Taste Test correlated with anhedonia measures, they did not correlate with each other. This poses the question of whether there are subgroups within anhedonia; however, further work is required to directly test this hypothesis. CONCLUSIONS: Our findings suggest that anhedonia is a heterogeneous symptom associated with impairments in reward sensitivity and effort-based decision-making.


Asunto(s)
Anhedonia , Toma de Decisiones , Humanos , Motivación , Antidepresivos , Recompensa
12.
Emerg Top Life Sci ; 6(5): 479-489, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36413089

RESUMEN

Both the neuropsychiatric syndrome of apathy and major depressive disorder comprise a heterogenous cluster of symptoms which span multiple behavioural domains. Despite this heterogeneity, there is a tendency in the preclinical literature to conclude a MDD or apathy-like phenotype from a single dimensional behavioural task used in isolation, which may lead to inaccurate phenotypic interpretation. This is significant, as apathy and major depressive disorder are clinically distinct with different underlying mechanisms and treatment approaches. At the clinical level, apathy and major depressive disorder can be dissociated in the negative valence (loss) domain of the Research Domain Criteria. Symptoms of MDD in the negative valence (loss) domain can include an exaggerated response to emotionally salient stimuli and low mood, while in contrast apathy is characterised by an emotionally blunted state. In this article, we highlight how using a single dimensional approach can limit psychiatric model interpretation. We discuss how integrating behavioural findings from both the positive and negative (loss) valence domains of the Research Domain Criteria can benefit interpretation of findings. We focus particularly on behaviours relating to the negative valence (loss) domain, which may be used to distinguish between apathy and major depressive disorder at the preclinical level. Finally, we consider how future approaches using home cage monitoring may offer a new opportunity to detect distinct behavioural profiles and benefit the overall translatability of findings.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/terapia , Investigación
13.
J Neurosci Methods ; 381: 109705, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36096238

RESUMEN

The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.


Asunto(s)
Neurociencias , Roedores , Crianza de Animales Domésticos/métodos , Bienestar del Animal , Animales , Alimentos , Ratones
14.
Animals (Basel) ; 12(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36077894

RESUMEN

There is increasing evidence that, compared to non-aversive handling methods (i.e., tunnel and cupping), tail handling has a negative impact on mouse welfare. Despite this evidence, there are still research organisations that continue to use tail handling. Here, we investigated handling for routine husbandry by three different methods: tail, cupping and tube in a relevant real-world scenario involving mice bred off-site. After transfer to the destination unit, mice were assessed for overt behaviours associated with anxiety and fear. Mice that experienced tail handling were less easy to handle, were more responsive to the box opening, and scored lower in a hand approach test. One barrier to non-tail handling methods is the current practice of restraining mice by the tail for procedures. We therefore next assessed whether a modified method for restraint that takes the animal from cupping to restraint without the use of the tail was associated with better welfare. This refined restraint method reduced overt signs of distress although we did not find any differences in corticosterone levels or anxiety-related behaviours. These findings suggest that avoiding tail handling throughout the animal's laboratory experience, including during restraint, benefits their welfare.

16.
Brain Neurosci Adv ; 6: 23982128221088794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341069

RESUMEN

Falls resulting from multifactorial deficits are common in both normal ageing and Parkinson's disease. Resultant injuries can lead to increased hospitalisation and excess mortality. As the disease progresses, gait and balance deficits are relatively refractory to dopaminergic treatments suggesting another system is involved. Attentional impairment is a significant risk factor for falls, and disruption to both the cortical cholinergic system and striatal dopaminergic system increases falls in rats undergoing a complex motor task with high attentional load. However, it is unclear whether this translates to mice and whether normal ageing induces similar deficits. In this study, we use a complex motor task to test the effects of acute dopaminergic and cholinergic antagonism using alpha-flupentixol and scopolamine, respectively, in mice. We also test the effects of normal ageing on complex motor performance and whether these changes are sensitive to a clinical dose of the non-steroidal anti-inflammatory Rimadyl. Consistent with previous work, we show that cholinergic but not dopaminergic antagonism impaired task performance. However, a combined approach did not potentiate the deficit beyond observed with cholinergic antagonism alone. We also show that task performance is impaired in aged mice relative to younger controls, and that Rimadyl reduces number of foot slips in an age-specific manner. Overall, these data support prior work showing the importance of the cholinergic system in falls. The studies in aged mice found age-related impairments and a role for inflammation but did not find evidence of an interaction with attentional load, although only one manipulation was tested.

17.
Brain Neurosci Adv ; 6: 23982128221081645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299619

RESUMEN

The ability of the N-methyl-D-aspartate receptor antagonist ketamine to induce a rapid and sustained antidepressant effect has led to a surge in pre-clinical studies investigating underlying mechanisms and seeking novel treatments. Animal models are key to this research as they can provide a behavioural readout linking underlying mechanisms to clinical benefits. However, quantifying depression-related behaviours in rodents represents a major challenge with the validity of traditional methods such as models of behavioural despair (forced swim test and tail suspension test) a topic of debate. While there is good evidence to support the value of using these behavioural readouts to study the effects of stress, these approaches have largely failed to detect reliable phenotypic effects in other disease models. In this systematic review, we identified publications which had tested N-methyl-D-aspartate receptor antagonists in normal animals using either the forced swim test or tail suspension test. We compared findings for different doses and time points and also drugs with different clinical profiles to investigate how well the outcomes in the rodent model predicted their effects in the clinic. Despite clear evidence that N-methyl-D-aspartate receptor antagonists reduce immobility time and hence exhibit an antidepressant profile in these tasks, we found similar effects with both clinically effective drugs as well as those which have failed to show efficacy in clinical trials. These findings suggest that behavioural despair tests in normal animals do not provide a good method to predict clinical efficacy of N-methyl-D-aspartate receptor antagonists.

18.
Neuropsychopharmacology ; 47(7): 1367-1378, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35115661

RESUMEN

Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.


Asunto(s)
Trastorno del Espectro Autista , Guanilato-Quinasas/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/genética , Canales de Potasio/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología
19.
Genes Brain Behav ; 21(4): e12797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075790

RESUMEN

Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/- rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/- rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/- mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks.


Asunto(s)
Guanilato-Quinasas , Haploinsuficiencia , Esquizofrenia , Proteínas Supresoras de Tumor , Animales , Modelos Animales de Enfermedad , Guanilato-Quinasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Fenciclidina/farmacología , Ratas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Conducta Social , Proteínas Supresoras de Tumor/genética
20.
Eur J Neurosci ; 55(9-10): 2955-2970, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33502040

RESUMEN

Studies in human and non-human species suggest that decision-making behaviour can be biased by an affective state, also termed an affective bias. To study these behaviours in non-human species, judgement bias tasks (JBT) have been developed. Animals are trained to associate specific cues (tones) with a positive or negative/less positive outcome. Animals are then presented with intermediate ambiguous cues and affective biases quantified by observing whether animals make more optimistic or more pessimistic choices. Here we use a high versus low reward JBT and test whether pharmacologically distinct compounds, which induce negative biases in learning and memory, have similar effects on decision-making: tetrabenazine (0.0-1.0 mg/kg), retinoic acid (0.0-10.0 mg/kg), and rimonabant (0.0-10.0 mg/kg). We also tested immunomodulatory compounds: interferon-α (0-100 units/kg), lipopolysaccharide (0.0-10.0 µg/kg), and corticosterone (0.0-10.0 mg/kg). We observed no specific effects in the JBT with any acute treatment except corticosterone which induced a negative bias. We have previously observed a similar lack of effect with acute but not chronic psychosocial stress and so next tested decision-making behaviour following chronic interferon-alpha. Animals developed a negative bias which was sustained even after treatment was ended. These data suggest that decision-making behaviour in the task is sensitive to chronic but not acute effects of most pro-depressant drugs or immunomodulators, but the exogenous administration of acute corticosterone induces pessimistic behaviour. This work supports our hypothesis that biases in decision-making develop over a different temporal scale to those seen with learning and memory which may be relevant in the development and perpetuation of mood disorders.


Asunto(s)
Corticosterona , Agentes Inmunomoduladores , Animales , Sesgo , Corticosterona/farmacología , Interferón-alfa , Juicio , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA