Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 128(5): 2144-2155, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29600961

RESUMEN

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid ß (Aß) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aß pathology in mice producing both human Aß and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aß deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti-apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aß pathology and may represent a selective approach to treat AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Anticuerpos Monoclonales de Origen Murino/farmacología , Apolipoproteína E4/antagonistas & inhibidores , Placa Amiloide/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Animales , Apolipoproteína E3/antagonistas & inhibidores , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Humanos , Ratones , Ratones Noqueados , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología
2.
Neuron ; 96(5): 1013-1023.e4, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29216448

RESUMEN

The apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer disease. Previous studies suggest that reduction of apoE levels through genetic manipulation can reduce Aß pathology. However, it is not clear how reduction of apoE levels after birth would affect amyloid deposition. We utilize an antisense oligonucleotide (ASO) to reduce apoE expression in the brains of APP/PS1-21 mice homozygous for the APOE-ε4 or APOE-ε3 allele. ASO treatment starting after birth led to a significant decrease in Aß pathology when assessed at 4 months. Interestingly, ASO treatment starting at the onset of amyloid deposition led to an increase in Aß plaque size and a reduction in plaque-associated neuritic dystrophy with no change in overall plaque load. These results suggest that lowering apoE levels prior to plaque deposition can strongly affect the initiation of Aß pathology while lowering apoE after Aß seeding modulates plaque size and toxicity.


Asunto(s)
Péptidos beta-Amiloides , Amiloidosis/tratamiento farmacológico , Apolipoproteínas E/antagonistas & inhibidores , Oligonucleótidos Antisentido/uso terapéutico , Envejecimiento/fisiología , Alelos , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/patología , Animales , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide/patología , Placa Amiloide/prevención & control
3.
Proc Natl Acad Sci U S A ; 114(43): 11524-11529, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073081

RESUMEN

Variants in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) were recently found to increase the risk for developing Alzheimer's disease (AD). In the brain, TREM2 is predominately expressed on microglia, and its association with AD adds to increasing evidence implicating a role for the innate immune system in AD initiation and progression. Thus far, studies have found TREM2 is protective in the response to amyloid pathology while variants leading to a loss of TREM2 function impair microglial signaling and are deleterious. However, the potential role of TREM2 in the context of tau pathology has not yet been characterized. In this study, we crossed Trem2+/+ (T2+/+) and Trem2-/- (T2-/-) mice to the PS19 human tau transgenic line (PS) to investigate whether loss of TREM2 function affected tau pathology, the microglial response to tau pathology, or neurodegeneration. Strikingly, by 9 mo of age, T2-/-PS mice exhibited significantly less brain atrophy as quantified by ventricular enlargement and preserved cortical volume in the entorhinal and piriform regions compared with T2+/+PS mice. However, no TREM2-dependent differences were observed for phosphorylated tau staining or insoluble tau levels. Rather, T2-/-PS mice exhibited significantly reduced microgliosis in the hippocampus and piriform cortex compared with T2+/+PS mice. Gene expression analyses and immunostaining revealed microglial activation was significantly attenuated in T2-/-PS mice, and there were lower levels of inflammatory cytokines and astrogliosis. These unexpected findings suggest that impairing microglial TREM2 signaling reduces neuroinflammation and is protective against neurodegeneration in the setting of pure tauopathy.


Asunto(s)
Inflamación/genética , Glicoproteínas de Membrana/metabolismo , Enfermedades Neurodegenerativas/genética , Receptores Inmunológicos/metabolismo , Tauopatías , Animales , Regulación de la Expresión Génica/fisiología , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Receptores Inmunológicos/genética
4.
Neurobiol Dis ; 108: 277-287, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28860089

RESUMEN

The neuronal ceroid lipofuscinoses (NCLs) are devastating inherited progressive neurodegenerative diseases, with most forms having a childhood onset of clinical signs. The NCLs are characterized by progressive cognitive and motor decline, vision loss, seizures, respiratory and swallowing impairment, and ultimately premature death. Different forms of NCL result from mutations in at least 13 genes. The clinical signs of some forms overlap significantly, so genetic testing is the only way to definitively determine which form an individual patient suffers from. At present, an effective treatment is available for only one form of NCL. Evidence of NCL has been documented in over 20 canine breeds and in mixed-breed dogs. To date, 12 mutations in 8 different genes orthologous to the human NCL genes have been found to underlie NCL in a variety of dog breeds. A Dachshund model with a null mutation in one of these genes is being utilized to investigate potential therapeutic interventions, including enzyme replacement and gene therapies. Demonstration of the efficacy of enzyme replacement therapy in this model led to successful completion of human clinical trials of this treatment. Further research into the other canine NCLs, with in-depth characterization and understanding of the disease processes, will likely lead to the development of successful therapeutic interventions for additional forms of NCL, for both human patients and animals with these disorders.


Asunto(s)
Enfermedades de los Perros/terapia , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Modelos Animales de Enfermedad , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/genética , Enfermedades de los Perros/patología , Perros , Humanos , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Lipofuscinosis Ceroideas Neuronales/terapia
6.
J Exp Med ; 214(5): 1227-1238, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28416651

RESUMEN

Tauopathies are characterized by the progressive accumulation of hyperphosphorylated, aggregated forms of tau. Our laboratory has previously demonstrated that passive immunization with an anti-tau antibody, HJ8.5, decreased accumulation of pathological tau in a human P301S tau-expressing transgenic (P301S-tg) mouse model of frontotemporal dementia/tauopathy. To investigate whether the Fc domain of HJ8.5 is required for the therapeutic effect, we engineered single-chain variable fragments (scFvs) derived from HJ8.5 with variable linker lengths, all specific to human tau. Based on different binding properties, we selected two anti-tau scFvs and tested their efficacy in vivo by adeno-associated virus-mediated gene transfer to the brain of P301S-tg mice. The scFvs significantly reduced levels of hyperphosphorylated, aggregated tau in brain tissue of P301S-tg mice, associated with a decrease in detergent-soluble tau species. Interestingly, these mice showed substantial levels of scFvs in the cerebrospinal fluid without significant effects on total extracellular tau levels. Therefore, our study provides a novel strategy for anti-tau immunotherapeutics that potentially limits a detrimental proinflammatory response.


Asunto(s)
Anticuerpos de Cadena Única/inmunología , Tauopatías/inmunología , Proteínas tau/inmunología , Animales , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/fisiología , Tauopatías/metabolismo
7.
Ann Clin Transl Neurol ; 4(3): 180-190, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28275652

RESUMEN

OBJECTIVE: Sleep disturbances are prevalent in human tauopathies yet despite the importance of sleep, little is known about its relationship with tau pathology. Here, we investigate this interaction by analyzing sleep and tau pathology throughout tauopathy disease progression in P301S human tau transgenic mice. METHODS: P301S and wild-type mice were analyzed by electroencephalography (EEG)/electromyography at 3, 6, 9, and 11 months of age for sleep/wake time, EEG power, and homeostatic response. Cortical volume and tau pathology was also assessed by anti-phospho-tau AT8 staining. RESULTS: P301S tau mice had significantly decreased rapid eye movement (REM) sleep at 9 months of age and decreased REM and non-REM (NREM) sleep as well as increased wakefulness at 11 months. Sleep loss was characterized by fewer wake, REM, and NREM bouts, increased wake bout duration, and decreased sleep bout duration. Decreased REM and NREM sleep was associated with increased brainstem tau pathology in the sublaterodorsal area and parafacial zone, respectively. P301S mice also showed increased EEG power at 6 and 9 months of age and decreased power at 11 months. Decreased EEG power was associated with decreased cortical volume. Despite sleep disturbances, P301S mice maintained homeostatic response to sleep deprivation. INTERPRETATION: Our results indicate that tau pathology is associated with sleep disturbances that worsen with age and these changes may be related to tau pathology in brainstem sleep regulating regions as well as neurodegeneration. Tau-induced sleep changes could affect disease progression and be a marker for therapeutic efficacy in this and other tauopathy models.

8.
J Neurosci ; 36(46): 11704-11715, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27852778

RESUMEN

Hyperinsulinemia is a risk factor for late-onset Alzheimer's disease (AD). In vitro experiments describe potential connections between insulin, insulin signaling, and amyloid-ß (Aß), but in vivo experiments are needed to validate these relationships under physiological conditions. First, we performed hyperinsulinemic-euglycemic clamps with concurrent hippocampal microdialysis in young, awake, behaving APPswe/PS1dE9 transgenic mice. Both a postprandial and supraphysiological insulin clamp significantly increased interstitial fluid (ISF) and plasma Aß compared with controls. We could detect no increase in brain, ISF, or CSF insulin or brain insulin signaling in response to peripheral hyperinsulinemia, despite detecting increased signaling in the muscle. Next, we delivered insulin directly into the hippocampus of young APP/PS1 mice via reverse microdialysis. Brain tissue insulin and insulin signaling was dose-dependently increased, but ISF Aß was unchanged by central insulin administration. Finally, to determine whether peripheral and central high insulin has differential effects in the presence of significant amyloid pathology, we repeated these experiments in older APP/PS1 mice with significant amyloid plaque burden. Postprandial insulin clamps increased ISF and plasma Aß, whereas direct delivery of insulin to the hippocampus significantly increased tissue insulin and insulin signaling, with no effect on Aß in old mice. These results suggest that the brain is still responsive to insulin in the presence of amyloid pathology but increased insulin signaling does not acutely modulate Aß in vivo before or after the onset of amyloid pathology. Peripheral hyperinsulinemia modestly increases ISF and plasma Aß in young and old mice, independent of neuronal insulin signaling. SIGNIFICANCE STATEMENT: The transportation of insulin from blood to brain is a saturable process relevant to understanding the link between hyperinsulinemia and AD. In vitro experiments have found direct connections between high insulin and extracellular Aß, but these mechanisms presume that peripheral high insulin elevates brain insulin significantly. We found that physiological hyperinsulinemia in awake, behaving mice does not increase CNS insulin to an appreciable level yet modestly increases extracellular Aß. We also found that the brain of aged APP/PS1 mice was not insulin resistant, contrary to the current state of the literature. These results further elucidate the relationship between insulin, the brain, and AD and its conflicting roles as both a risk factor and potential treatment.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Femenino , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Transgénicos , Presenilina-1/genética , Transducción de Señal
9.
Acta Neuropathol Commun ; 3: 70, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26556230

RESUMEN

INTRODUCTION: Amyloid ß (Aß) accumulates in the extracellular space as diffuse and neuritic plaques in Alzheimer's disease (AD). Aß also deposits on the walls of arterioles as cerebral amyloid angiopathy (CAA) in most cases of AD and sometimes independently of AD. Apolipoprotein E (apoE) ɛ4 is associated with increases in both Aß plaques and CAA in humans. Studies in mouse models that develop Aß deposition have shown that murine apoE and human apoE4 have different abilities to facilitate plaque or CAA formation when studied independently. To better understand and compare the effects of murine apoE and human apoE4, we bred 5XFAD (line 7031) transgenic mice so that they expressed one copy of murine apoE and one copy of human apoE4 under the control of the normal murine apoE regulatory elements (5XFAD/apoE(m/4)). RESULTS: The 5XFAD/apoE(m/4) mice contained levels of parenchymal CAA that were intermediate between 5XFAD/apoE(m/m) and 5XFAD/apoE(4/4) mice. In 5XFAD/apoE(m/4) mice, we found that Aß parenchymal plaques co-localized with much more apoE than did parenchymal CAA, suggesting differential co-aggregation of apoE with Aß in plaques versus CAA. More importantly, within the brain parenchyma of the 5XFAD/apoE(m/4) mice, plaques contained more murine apoE, which on its own results in more pronounced and earlier plaque formation, while CAA contained more human apoE4 which on its own results in more pronounced CAA formation. We further confirmed the co-aggregation of mouse apoE with Aß in plaques by showing a strong correlation between insoluble mouse apoE and insoluble Aß in PS1APP-21/apoE(m/4) mice which develop plaques without CAA. CONCLUSIONS: These studies suggest that both murine apoE and human apoE4 facilitate differential opposing effects in influencing Aß plaques versus CAA via different co-aggregation with these two amyloid lesions and set the stage for understanding these effects at a molecular level.


Asunto(s)
Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Regulación de la Expresión Génica/genética , Presenilina-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Apolipoproteínas E/genética , Encéfalo/patología , Angiopatía Amiloide Cerebral/genética , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Placa Amiloide/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...