Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826231

RESUMEN

While high-throughput (HTP) assays have been proposed as platforms to rapidly assess reproductive toxicity, there is currently a lack of established assays that specifically address germline development/function and fertility. We assessed the applicability domains of yeast (S. cerevisiae) and nematode (C. elegans) HTP assays in toxicity screening of 124 environmental chemicals, determining their agreement in identifying toxicants and their concordance with reproductive toxicity in vivo. We integrated data generated in the two models and compared results using a streamlined, semi-automated benchmark dose (BMD) modeling approach. We then extracted and modeled relevant mammalian in vivo data available for the matching chemicals included in the Toxicological Reference Database (ToxRefDB). We ranked potencies of common compounds using the BMD and evaluated correlation between the datasets using Pearson and Spearman correlation coefficients. We found moderate to good correlation across the three data sets, with r = 0.48 (95% CI: 0.28-1.00, p<0.001) and rs = 0.40 (p=0.002) for the parametric and rank order correlations between the HTP BMDs; r = 0.95 (95% CI: 0.76-1.00, p=0.0005) and rs = 0.89 (p=0.006) between the yeast assay and ToxRefDB BMDs; and r = 0.81 (95% CI: 0.28-1.00, p=0.014) and rs = 0.75 (p=0.033) between the worm assay and ToxRefDB BMDs. Our findings underscore the potential of these HTP assays to identify environmental chemicals that exhibit reproductive toxicity. Integrating these HTP datasets into mammalian in vivo prediction models using machine learning methods could further enhance the predictive value of these assays in future rapid screening efforts.

2.
Nat Commun ; 15(1): 4016, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740890

RESUMEN

Two-dimensional (2D) materials have garnered significant attention in recent years due to their atomically thin structure and unique electronic and optoelectronic properties. To harness their full potential for applications in next-generation electronics and photonics, precise control over the dielectric environment surrounding the 2D material is critical. The lack of nucleation sites on 2D surfaces to form thin, uniform dielectric layers often leads to interfacial defects that degrade the device performance, posing a major roadblock in the realization of 2D-based devices. Here, we demonstrate a wafer-scale, low-temperature process (<250 °C) using atomic layer deposition (ALD) for the synthesis of uniform, conformal amorphous boron nitride (aBN) thin films. ALD deposition temperatures between 125 and 250 °C result in stoichiometric films with high oxidative stability, yielding a dielectric strength of 8.2 MV/cm. Utilizing a seed-free ALD approach, we form uniform aBN dielectric layers on 2D surfaces and fabricate multiple quantum well structures of aBN/MoS2 and aBN-encapsulated double-gated monolayer (ML) MoS2 field-effect transistors to evaluate the impact of aBN dielectric environment on MoS2 optoelectronic and electronic properties. Our work in scalable aBN dielectric integration paves a way towards realizing the theoretical performance of 2D materials for next-generation electronics.

3.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38798500

RESUMEN

Background: Fetal growth restriction (FGR) is associated with perinatal death and other adverse birth outcomes, as well as long term complications including increased childhood morbidity, abnormal neurodevelopment, and cardio-metabolic diseases in adulthood. FGR has been associated with placental epigenetic reprogramming, which may mediate these long term outcomes. Placental malaria (PM) is the leading cause of FGR globally, but the impact on placental epigenetics is unknown. We hypothesized that methylomic profiling of placentas from non-malarial and malarial FGR would reveal common and distinct mechanistic pathways associated with FGR. Results: We used a methylation array to compare the CpG profiles between FGR from a cohort with no malaria exposure and a cohort of pregnancies complicated by both PM and FGR. Non-malarial FGR was associated with 65 differentially methylated CpGs, whereas PM-FGR was associated with 133 DMCs, compared to their corresponding controls. One DMC (cg16389901) was commonly hypomethylated in both groups, corresponding to the promoter region of BMP4 . Comparison of FGR vs. PM-FGR identified 522 DMCs between these two groups, which was not attributable to geographic location or different cellular compositions of these two groups. Conclusion: Placentas from pregnancies with PM-associated FGR showed distinct methylation profiles as compared to non-malarial FGR, suggesting novel epigenetic reprogramming in response to malaria. There may be distinct long-term health outcomes in FGR pregnancies also complicated by PM.

4.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798648

RESUMEN

Neural organoids have revolutionized how human neurodevelopmental disorders (NDDs) are studied. Yet, their utility for screening complex NDD etiologies and in drug discovery is limited by a lack of scalable and quantifiable derivation formats. Here, we describe the RosetteArray ® platform's ability to be used as an off-the-shelf, 96-well plate assay that standardizes incipient forebrain and spinal cord organoid morphogenesis as micropatterned, 3-D, singularly polarized neural rosette tissues (>9000 per plate). RosetteArrays are seeded from cryopreserved human pluripotent stem cells, cultured over 6-8 days, and immunostained images can be quantified using artificial intelligence-based software. We demonstrate the platform's suitability for screening developmental neurotoxicity and genetic and environmental factors known to cause neural tube defect risk. Given the presence of rosette morphogenesis perturbation in neural organoid models of NDDs and neurodegenerative disorders, the RosetteArray platform could enable quantitative high-throughput screening (qHTS) of human neurodevelopmental risk across regulatory and precision medicine applications.

5.
Am J Obstet Gynecol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697337

RESUMEN

BACKGROUND: The Multi-Omics for Mothers and Infants consortium aims to improve birth outcomes. Preterm birth is a major obstetrical complication globally and causes significant infant and childhood morbidity and mortality. OBJECTIVE: We analyzed placental samples (basal plate, placenta or chorionic villi, and the chorionic plate) collected by the 5 Multi-Omics for Mothers and Infants sites, namely The Alliance for Maternal and Newborn Health Improvement Bangladesh, The Alliance for Maternal and Newborn Health Improvement Pakistan, The Alliance for Maternal and Newborn Health Improvement Tanzania, The Global Alliance to Prevent Prematurity and Stillbirth Bangladesh, and The Global Alliance to Prevent Prematurity and Stillbirth Zambia. The goal was to analyze the morphology and gene expression of samples collected from preterm and uncomplicated term births. STUDY DESIGN: The teams provided biopsies from 166 singleton preterm (<37 weeks' gestation) and 175 term (≥37 weeks' gestation) deliveries. The samples were fixed in formalin and paraffin embedded. Tissue sections from these samples were stained with hematoxylin and eosin and subjected to morphologic analyses. Other placental biopsies (n=35 preterm, 21 term) were flash frozen, which enabled RNA purification for bulk transcriptomics. RESULTS: The morphologic analyses revealed a surprisingly high rate of inflammation that involved the basal plate, placenta or chorionic villi, and the chorionic plate. The rate of inflammation in chorionic villus samples, likely attributable to chronic villitis, ranged from 25% (Pakistan site) to 60% (Zambia site) of cases. Leukocyte infiltration in this location vs in the basal plate or chorionic plate correlated with preterm birth. Our transcriptomic analyses identified 267 genes that were differentially expressed between placentas from preterm vs those from term births (123 upregulated, 144 downregulated). Mapping the differentially expressed genes onto single-cell RNA sequencing data from human placentas suggested that all the component cell types, either singly or in subsets, contributed to the observed dysregulation. Consistent with the histopathologic findings, gene ontology analyses highlighted the presence of leukocyte infiltration or activation and inflammatory responses in both the fetal and maternal compartments. CONCLUSION: The relationship between placental inflammation and preterm birth is appreciated in developed countries. In this study, we showed that this link also exists in developing geographies. In addition, among the participating sites, we found geographic- and population-based differences in placental inflammation and preterm birth, suggesting the importance of local factors.

6.
Reprod Toxicol ; 126: 108602, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723698

RESUMEN

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals would benefit significantly from scalable and innovative approaches to testing using functionally comparable reproductive models such as the nematode C. elegans. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in the average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.


Asunto(s)
Caenorhabditis elegans , Contaminantes Ambientales , Reproducción , Caenorhabditis elegans/efectos de los fármacos , Animales , Reproducción/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Pruebas de Toxicidad/métodos , Ensayos Analíticos de Alto Rendimiento
7.
Nat Commun ; 15(1): 3487, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664424

RESUMEN

An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO2, concluding that even this moderate increase in CO2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO2 levels in our atmosphere.


Asunto(s)
COVID-19 , Dióxido de Carbono , SARS-CoV-2 , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , COVID-19/transmisión , COVID-19/virología , Humanos , Concentración de Iones de Hidrógeno , Aerosoles , Humedad , Ventilación , Aerosoles y Gotitas Respiratorias/metabolismo , Aerosoles y Gotitas Respiratorias/virología , Atmósfera/química
8.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670956

RESUMEN

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

9.
ACS Nanosci Au ; 4(2): 115-127, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38644964

RESUMEN

Two-dimensional (2D) materials are popular for fundamental physics study and technological applications in next-generation electronics, spintronics, and optoelectronic devices due to a wide range of intriguing physical and chemical properties. Recently, the family of 2D metals and 2D semiconductors has been expanding rapidly because they offer properties once unknown to us. One of the challenges to fully access their properties is poor stability in ambient conditions. In the first half of this Review, we briefly summarize common methods of preparing 2D metals and highlight some recent approaches for making air-stable 2D metals. Additionally, we introduce the physicochemical properties of some air-stable 2D metals recently explored. The second half discusses the air stability and oxidation mechanisms of 2D transition metal dichalcogenides and some elemental 2D semiconductors. Their air stability can be enhanced by optimizing growth temperature, substrates, and precursors during 2D material growth to improve material quality, which will be discussed. Other methods, including doping, postgrowth annealing, and encapsulation of insulators that can suppress defects and isolate the encapsulated samples from the ambient environment, will be reviewed.

10.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585844

RESUMEN

Reproduction is a functional outcome that relies on complex cellular, tissue, and organ interactions that span the developmental period to adulthood. Thus, the assessment of its disruption by environmental chemicals is remarkably painstaking in conventional toxicological animal models and does not scale up to the number of chemicals present in our environment and requiring testing. We adapted a previously described low-throughput in vivo chromosome segregation assay using C. elegans predictive of reproductive toxicity and leveraged available public data sources (ToxCast, ICE) to screen and characterize 133 physiologically-relevant chemicals in a high-throughput manner. The screening outcome was further validated in a second, independent in vivo assay assessing embryonic viability. In total, 13 chemicals were classified as reproductive toxicants with the two most active chemicals belonging to the large family of Quaternary Ammonium Compounds (QACs) commonly used as disinfectants but with limited available reproductive toxicity data. We compared the results from the C. elegans assay with ToxCast in vitro data compiled from 700+ cell response assays and 300+ signaling pathways-based assays. We did not observe a difference in the bioactivity or in average potency (AC50) between the top and bottom chemicals. However, the intended target categories were significantly different between the classified chemicals with, in particular, an over-representation of steroid hormone targets for the high Z-score chemicals. Taken together, these results point to the value of in vivo models that scale to high-throughput level for reproductive toxicity assessment and to the need to prioritize the assessment of QACs impacts on reproduction.

11.
Nat Commun ; 15(1): 2738, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548739

RESUMEN

The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2 by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized. Vac S - 1 as well as Re Mo 0 and Re Mo - 1 exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.

12.
ACS Nano ; 18(12): 8876-8884, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38497598

RESUMEN

Graphene-enhanced Raman scattering (GERS) offers great opportunities to achieve optical sensing with a high uniformity and superior molecular selectivity. The GERS mechanism relies on charge transfer between molecules and graphene, which is difficult to manipulate by varying the band alignment between graphene and the molecules. In this work, we synthesized a few atomic layers of metal termed two-dimensional (2D) metal to precisely and deterministically modify the graphene Fermi level. Using copper phthalocyanine (CuPc) as a representative molecule, we demonstrated that tuning the Fermi level can significantly improve the signal enhancement and molecular selectivity of GERS. Specifically, aligning the Fermi level of graphene closer to the highest occupied molecular orbital (HOMO) of CuPc results in a more pronounced Raman enhancement. Density functional theory (DFT) calculations of the charge density distribution reproduce the enhanced charge transfer between CuPc molecules and graphene with a modulated Fermi level. Extending our investigation to other molecules such as rhodamine 6G, rhodamine B, crystal violet, and F16CuPc, we showed that 2D metals enabled Fermi level tuning, thus improving GERS detection for molecules and contributing to an enhanced molecular selectivity. This underscores the potential of utilizing 2D metals for the precise control and optimization of GERS applications, which will benefit the development of highly sensitive, specific, and reliable sensors.

13.
Radiol Cardiothorac Imaging ; 6(1): e230107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358330

RESUMEN

Purpose To achieve ultra-high temporal resolution (approximately 20 msec) in free-breathing, real-time cardiac cine MRI using golden-angle radial sparse parallel (GRASP) reconstruction amplified with view sharing (VS) and k-space-weighted image contrast (KWIC) filtering. Materials and Methods Fourteen pediatric patients with congenital heart disease (mean age [SD], 9 years ± 2; 13 male) and 10 adult patients with arrhythmia (mean age, 62 years ± 8; nine male) who underwent both standard breath-hold cine and free-breathing real-time cine using GRASP were retrospectively identified. To achieve high temporal resolution, each time frame was reconstructed using six radial spokes, corresponding to acceleration factors ranging from 24 to 32. To compensate for loss in spatial resolution resulting from over-regularization in GRASP, VS and KWIC filtering were incorporated. The blur metric, visual image quality scores, and biventricular parameters were compared between clinical and real-time cine images. Results In pediatric patients, the incorporation of VS and KWIC into GRASP (ie, GRASP + VS + KWIC) produced significantly (P < .05) sharper x-y-t (blur metric: 0.36 ± 0.03, 0.41 ± 0.03, 0.48 ± 0.03, respectively) and x-y-f (blur metric: 0.28 ± 0.02, 0.31 ± 0.03, 0.37 ± 0.03, respectively) component images compared with GRASP + VS and conventional GRASP. Only the noise score differed significantly between GRASP + VS + KWIC and clinical cine; all visual scores were above the clinically acceptable (3.0) cutoff point. Biventricular volumetric parameters strongly correlated (R2 > 0.85) between clinical and real-time cine images reconstructed with GRASP + VS + KWIC and were in good agreement (relative error < 6% for all parameters). In adult patients, the visual scores of all categories were significantly lower (P < .05) for clinical cine compared with real-time cine with GRASP + VS + KWIC, except for noise (P = .08). Conclusion Incorporating VS and KWIC filtering into GRASP reconstruction enables ultra-high temporal resolution (approximately 20 msec) without significant loss in spatial resolution. Keywords: Cine, View Sharing, k-Space-weighted Image Contrast Filtering, Radial k-Space, Pediatrics, Arrhythmia, GRASP, Compressed Sensing, Real-Time, Free-Breathing Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Imagen por Resonancia Cinemagnética , Imagen por Resonancia Magnética , Adulto , Humanos , Masculino , Niño , Persona de Mediana Edad , Estudios Retrospectivos , Taquipnea , Hiperventilación , Arritmias Cardíacas
14.
Eur Respir Rev ; 33(171)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38417970

RESUMEN

There is an increased risk of adverse perinatal outcomes in the ∼17% of women with asthma during pregnancy. The mechanisms linking maternal asthma and adverse outcomes are largely unknown, but reflect joint effects of genetics and prenatal exposure to maternal asthma. Animal models are essential to understand the underlying mechanisms independent of genetics and comorbidities, and enable safe testing of interventions. This scoping review aimed to explore the methodology, phenotype, characteristics, outcomes and quality of published studies using preclinical maternal asthma models. MEDLINE (PubMed), Embase (Elsevier) and Web of Science were systematically searched using previously validated search strings for maternal asthma and for animal models. Two reviewers independently screened titles and abstracts, full texts, and then extracted and assessed the quality of each study using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 2.0 guidelines. Out of 3618 studies identified, 39 were eligible for extraction. Most studies were in rodents (86%) and all were models of allergic asthma. Maternal and progeny outcomes included airway hyperresponsiveness, airway resistance, inflammation, lung immune cells, lung structure and serum immunoglobulins and cytokines. Experimental design (100%), procedural details (97%) and rationale (100%) were most often reported. Conversely, data exclusion (21%), blinding (18%) and adverse events (8%) were reported in a minority of studies. Species differences in physiology and timing of development, the use of allergens not relevant to humans and a lack of comparable outcome measures may impede clinical translation. Future studies exploring models of maternal asthma should adhere to the minimum core outcomes set presented in this review.


Asunto(s)
Asma , Complicaciones del Embarazo , Animales , Femenino , Humanos , Embarazo
15.
Radiol Artif Intell ; 6(1): e230132, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38166332

RESUMEN

Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007-December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (n = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: -0.6 mL/m2, LOA: -20.6 to 19.5 mL/m2) and end-systolic volume (ESV) (bias: -1.1 mL/m2, LOA: -18.1 to 15.9 mL/m2), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: -1.9 g/m2, LOA: -17.3 to 13.5 g/m2) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m2, LOA: -17.2 to 18.3 mL/m2) and ejection fraction (bias: 0.6%, LOA: -12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Keywords: Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification Supplemental material is available for this article. © RSNA, 2023.


Asunto(s)
Aprendizaje Profundo , Corazón Univentricular , Adulto , Niño , Humanos , Corazón , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos , Estudios Multicéntricos como Asunto
16.
ACS Appl Mater Interfaces ; 16(2): 2902-2911, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166373

RESUMEN

Monolayer transition metal dichalcogenides have strong intracovalent bonding. When stacked in multilayers, however, weak van der Waals interactions dominate interlayer mechanical coupling and, thus, influence their lattice vibrations. This study presents the frequency evolution of interlayer phonons in twisted WS2 bilayers, highly subject to the twist angle. The twist angle between the layers is controlled to modulate the spacing between the layers, which, in turn, affects the interlayer coupling that is probed by Raman spectroscopy. The shifts of high-frequency E2g1 (Γ) and A1g (Γ) phonon modes and their frequency separations are dependent on the twist angle, reflecting the correlation between the interlayer mechanical coupling and twist angle. In this work, we fabricated large-area, twisted bilayer WS2 with a clean interface with controlled twist angles. Polarized Raman spectroscopy identified new interlayer modes, which were not previously reported, depending on the twist angle. The appearance of breathing modes in Raman phonon spectra provides evidence of strong interlayer coupling in bilayer structures. We confirm that the twist angle can alter the exciton and trion dynamics of bilayers as indicated by the photoluminescence peak shift. These large-area controlled twist angle samples have practical applications in optoelectronic device fabrication and twistronics.

17.
ACS Appl Mater Interfaces ; 16(5): 6644-6652, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38264996

RESUMEN

Synthesis of large-area transition-metal dichalcogenides (TMDs) with controlled orientation is a significant challenge to their industrial applications. Substrate plays a vital role in determining the final quality of monolayer materials grown via the chemical vapor deposition process by controlling their orientation, crystal structure, and grain boundary. This study determined the binding energy and equilibrium distance for tungsten diselenide (WSe2) monolayers on crystalline and amorphous silicon dioxide and aluminum dioxide substrates. Differently oriented WSe2 monolayers are considered to investigate the role of the substrate in the orientation, binding strength, and equilibrium distance. This study can pave the way to synthesizing high-quality two-dimensional (2D) materials for electronic and chemical applications.

18.
Nature ; 625(7995): 494-499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233619

RESUMEN

Moiré superlattices based on van der Waals bilayers1-4 created at small twist angles lead to a long wavelength pattern with approximate translational symmetry. At large twist angles (θt), moiré patterns are, in general, incommensurate except for a few discrete angles. Here we show that large-angle twisted bilayers offer distinctly different platforms. More specifically, by using twisted tungsten diselenide bilayers, we create the incommensurate dodecagon quasicrystals at θt = 30° and the commensurate moiré crystals at θt = 21.8° and 38.2°. Valley-resolved scanning tunnelling spectroscopy shows disparate behaviours between moiré crystals (with translational symmetry) and quasicrystals (with broken translational symmetry). In particular, the K valley shows rich electronic structures exemplified by the formation of mini-gaps near the valence band maximum. These discoveries demonstrate that bilayers with large twist angles offer a design platform to explore moiré physics beyond those formed with small twist angles.

19.
Magn Reson Med ; 91(5): 1965-1977, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38084397

RESUMEN

PURPOSE: To develop a highly-accelerated, real-time phase contrast (rtPC) MRI pulse sequence with 40 fps frame rate (25 ms effective temporal resolution). METHODS: Highly-accelerated golden-angle radial sparse parallel (GRASP) with over regularization may result in temporal blurring, which in turn causes underestimation of peak velocity. Thus, we amplified GRASP performance by synergistically combining view-sharing (VS) and k-space weighted image contrast (KWIC) filtering. In 17 pediatric patients with congenital heart disease (CHD), the conventional GRASP and the proposed GRASP amplified by VS and KWIC (or GRASP + VS + KWIC) reconstruction for rtPC MRI were compared with respect to clinical standard PC MRI in measuring hemodynamic parameters (peak velocity, forward volume, backward volume, regurgitant fraction) at four locations (aortic valve, pulmonary valve, left and right pulmonary arteries). RESULTS: The proposed reconstruction method (GRASP + VS + KWIC) achieved better effective spatial resolution (i.e., image sharpness) compared with conventional GRASP, ultimately reducing the underestimation of peak velocity from 17.4% to 6.4%. The hemodynamic metrics (peak velocity, volumes) were not significantly (p > 0.99) different between GRASP + VS + KWIC and clinical PC, whereas peak velocity was significantly (p < 0.007) lower for conventional GRASP. RtPC with GRASP + VS + KWIC also showed the ability to assess beat-to-beat variation and detect the highest peak among peaks. CONCLUSION: The synergistic combination of GRASP, VS, and KWIC achieves 25 ms effective temporal resolution (40 fps frame rate), while minimizing the underestimation of peak velocity compared with conventional GRASP.


Asunto(s)
Medios de Contraste , Cardiopatías Congénitas , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Pulmón , Arteria Pulmonar , Cardiopatías Congénitas/diagnóstico por imagen
20.
Pediatr Transplant ; 28(1): e14652, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063266

RESUMEN

BACKGROUND: Chronic graft failure (CGF) in pediatric heart transplant (PHT) is multifactorial and may present with findings of fibrosis and microvessel disease (MVD) on endomyocardial biopsy (EMB). There is no optimal CGF surveillance method. We evaluated associations between cardiac magnetic resonance imaging (CMR) and historical/EMB correlates of CGF to assess CMR's utility as a surveillance method. METHODS: Retrospective analysis of PHT undergoing comprehensive CMR between September 2015 and January 2022 was performed. EMB within 6 months was graded for fibrosis (scale 0-5) and MVD (number of capillaries with stenotic wall thickening per field of view). Correlation analysis and logistic regression were performed. RESULTS: Forty-seven PHT with median age at CMR of 15.7 years (11.6, 19.3) and time from transplant of 6.4 years (4.1, 11.0) were studied. Cardiac allograft vasculopathy (CAV) was present in 11/44 (22.0%) and historical rejection in 14/41 (34.2%). CAV was associated with higher global T2 (49.0 vs. 47.0 ms; p = 0.038) and peak T2 (57.0 vs. 53.0 ms; p = 0.013) on CMR. Historical rejection was associated with higher global T2 (49.0 vs. 47.0 ms; p = 0.007) and peak T2 (57.0 vs. 53.0 ms; p = 0.03) as well as global extracellular volume (31.0 vs. 26.3%; p = 0.03). Higher fibrosis score on EMB correlated with smaller indexed left ventricular mass (rho = -0.34; p = 0.019) and greater degree of MVD with lower indexed left ventricular end-diastolic volume (rho = -0.35; p = 0.017). CONCLUSION: Adverse ventricular remodeling and abnormal myocardial characteristics on CMR are present in PHT with CAV, historical rejection, as well as greater fibrosis and MVD on EMB. CMR has the potential use for screening of CGF.


Asunto(s)
Trasplante de Corazón , Miocardio , Humanos , Niño , Miocardio/patología , Estudios Retrospectivos , Trasplante de Corazón/efectos adversos , Imagen por Resonancia Magnética , Fibrosis , Valor Predictivo de las Pruebas , Rechazo de Injerto/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA