RESUMEN
Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ecology and evolution of Asgard archaea.
Asunto(s)
Virus de Archaea , Archaea/genética , Virus de Archaea/genética , Cromosomas , Eucariontes/genética , FilogeniaRESUMEN
The ESCRT machinery, comprising of multiple proteins and subcomplexes, is crucial for membrane remodelling in eukaryotic cells, in processes that include ubiquitin-mediated multivesicular body formation, membrane repair, cytokinetic abscission, and virus exit from host cells. This ESCRT system appears to have simpler, ancient origins, since many archaeal species possess homologues of ESCRT-III and Vps4, the components that execute the final membrane scission reaction, where they have been shown to play roles in cytokinesis, extracellular vesicle formation and viral egress. Remarkably, metagenome assemblies of Asgard archaea, the closest known living relatives of eukaryotes, were recently shown to encode homologues of the entire cascade involved in ubiquitin-mediated membrane remodelling, including ubiquitin itself, components of the ESCRT-I and ESCRT-II subcomplexes, and ESCRT-III and Vps4. Here, we explore the phylogeny, structure, and biochemistry of Asgard homologues of the ESCRT machinery and the associated ubiquitylation system. We provide evidence for the ESCRT-I and ESCRT-II subcomplexes being involved in ubiquitin-directed recruitment of ESCRT-III, as it is in eukaryotes. Taken together, our analyses suggest a pre-eukaryotic origin for the ubiquitin-coupled ESCRT system and a likely path of ESCRT evolution via a series of gene duplication and diversification events.
Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Eucariontes , Archaea/genética , Archaea/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Ubiquitina/genéticaRESUMEN
The bacterial SbcC/SbcD DNA repair proteins were identified over a quarter of a century ago. Following the subsequent identification of the homologous Mre11/Rad50 complex in the eukaryotes and archaea, it has become clear that this conserved chromosomal processing machinery is central to DNA repair pathways and the maintenance of genomic stability in all forms of life. A number of experimental studies have explored this intriguing genome surveillance machinery, yielding significant insights and providing conceptual advances towards our understanding of how this complex operates to mediate DNA repair. However, the inherent complexity and dynamic nature of this chromosome-manipulating machinery continue to obfuscate experimental interrogations, and details regarding the precise mechanisms that underpin the critical repair events remain unanswered. This review will summarize our current understanding of the dramatic structural changes that occur in Mre11/Rad50 complex to mediate chromosomal tethering and accomplish the associated DNA processing events. In addition, undetermined mechanistic aspects of the DNA enzymatic pathways driven by this vital yet enigmatic chromosomal surveillance and repair apparatus will be discussed. In particular, novel and putative models of DNA damage recognition will be considered and comparisons will be made between the modes of action of the Rad50 protein and other related ATPases of the overarching SMC superfamily.
Asunto(s)
Proteínas Bacterianas/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Desoxirribonucleasas/química , Proteínas de Escherichia coli/química , Exonucleasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/metabolismo , Ciclo Celular , ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/metabolismo , Exonucleasas/metabolismo , Humanos , Hidrólisis , Proteína Homóloga de MRE11/metabolismo , Mutación , Unión Proteica , Conformación Proteica , Zinc/químicaRESUMEN
Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.
Asunto(s)
Proteínas Arqueales/fisiología , División Celular , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Sulfolobus acidocaldarius/citología , Proteínas Arqueales/química , Bortezomib/química , Bortezomib/farmacología , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/farmacología , Proteolisis , Sulfolobus acidocaldarius/efectos de los fármacos , Sulfolobus acidocaldarius/enzimologíaRESUMEN
Mre11 and Rad50 (M/R) proteins are part of an evolutionarily conserved macromolecular apparatus that maintains genomic integrity through repair pathways. Prior structural studies have revealed that this apparatus is extremely dynamic, displaying flexibility in the long coiled-coil regions of Rad50, a member of the structural maintenance of chromosome (SMC) superfamily of ATPases. However, many details of the mechanics of M/R chromosomal manipulation during DNA-repair events remain unclear. Here, we investigate the properties of the thermostable M/R complex from the archaeon Sulfolobus acidocaldarius using atomic force microscopy (AFM) to understand how this macromolecular machinery orchestrates DNA repair. While previous studies have observed canonical interactions between the globular domains of M/R and DNA, we observe transient interactions between DNA substrates and the Rad50 coiled coils. Fast-scan AFM videos (at 1-2 frames per second) of M/R complexes reveal that these interactions result in manipulation and translocation of the DNA substrates. Our study also shows dramatic and unprecedented ATP-dependent DNA unwinding events by the M/R complex, which extend hundreds of base pairs in length. Supported by molecular dynamic simulations, we propose a model for M/R recognition at DNA breaks in which the Rad50 coiled coils aid movement along DNA substrates until a DNA end is encountered, after which the DNA unwinding activity potentiates the downstream homologous recombination (HR)-mediated DNA repair.
Asunto(s)
Proteínas Arqueales/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Sulfolobus acidocaldarius/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , ADN de Archaea/química , ADN de Archaea/genética , ADN de Archaea/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteína Homóloga de MRE11/química , Proteína Homóloga de MRE11/genética , Microscopía de Fuerza Atómica , Unión Proteica , Sulfolobus acidocaldarius/química , Sulfolobus acidocaldarius/enzimología , Sulfolobus acidocaldarius/metabolismoRESUMEN
This issue of Emerging Topics in the Life Sciences highlights current areas of research in the field of archaeal biology and the following introductory editorial sets the stage by considering some of the key developments over the last four decades since the initial identification of the archaea as a unique form of life. Emerging topics from this vibrant and rapidly expanding field of research are considered and detailed further in the articles within this issue.
RESUMEN
The covalent modification of protein substrates by ubiquitin regulates a diverse range of critical biological functions. Although it has been established that ubiquitin-like modifiers evolved from prokaryotic sulphur transfer proteins it is less clear how complex eukaryotic ubiquitylation system arose and diversified from these prokaryotic antecedents. The discovery of ubiquitin, E1-like, E2-like and small-RING finger (srfp) protein components in the Aigarchaeota and the Asgard archaea superphyla has provided a substantive step toward addressing this evolutionary question. Encoded in operons, these components are likely representative of the progenitor apparatus that founded the modern eukaryotic ubiquitin modification systems. Here we report that these proteins from the archaeon Candidatus 'Caldiarchaeum subterraneum' operate together as a bona fide ubiquitin modification system, mediating a sequential ubiquitylation cascade reminiscent of the eukaryotic process. Our observations support the hypothesis that complex eukaryotic ubiquitylation signalling pathways have developed from compact systems originally inherited from an archaeal ancestor.
Asunto(s)
Archaea/química , Ubiquitinación , Ubiquitinas/química , Células Eucariotas , Humanos , Modelos Moleculares , Familia de Multigenes , Operón , Filogenia , Complejo de la Endopetidasa Proteasomal/química , Dominios Proteicos , Saccharomyces cerevisiae , Transducción de Señal , Especificidad de la Especie , Azufre/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.
Asunto(s)
Proteínas Arqueales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Sulfolobus acidocaldarius/genética , Ubiquitinas/genética , Proteínas Arqueales/metabolismo , Cromatografía en Gel , Cromatografía Liquida , Dicroismo Circular , Cristalografía por Rayos X , Espectrometría de Masas , Microscopía Electrónica , Complejo de la Endopetidasa Proteasomal/ultraestructura , Proteolisis , Sulfolobus acidocaldarius/metabolismo , Ubiquitinas/metabolismoRESUMEN
The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.
Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Archaea/enzimología , Proteínas Arqueales/metabolismo , ADN de Archaea/genética , Translocación Genética , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Roturas del ADN de Doble Cadena , ADN de Archaea/metabolismo , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
Branched DNA molecules are generated by the essential processes of replication and recombination. Owing to their distinctive extended shapes, these intermediates migrate differently from linear double-stranded DNA under certain electrophoretic conditions. However, these branched species exist in the cell at much low abundance than the bulk linear DNA. Consequently, branched molecules cannot be visualized by conventional electrophoresis and ethidium bromide staining. Two-dimensional native-native agarose electrophoresis has therefore been developed as a method to facilitate the separation and visualization of branched replication and recombination intermediates. A wide variety of studies have employed this technique to examine branched molecules in eukaryotic, archaeal, and bacterial cells, providing valuable insights into how DNA is duplicated and repaired in all three domains of life.
Asunto(s)
Replicación del ADN/genética , Electroforesis en Gel Bidimensional/métodos , Recombinación Genética/genética , Células Eucariotas , Células ProcariotasRESUMEN
During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5'-3' end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.
Asunto(s)
Daño del ADN , ADN de Archaea/genética , ADN Bacteriano/genética , ADN/genética , Células Eucariotas/metabolismo , FilogeniaRESUMEN
Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.
Asunto(s)
Proteínas Arqueales/química , ADN Helicasas/química , Desoxirribonucleasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , ADN/metabolismo , ADN Helicasas/metabolismo , Desoxirribonucleasas/metabolismo , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Ribonucleasa H/química , Sulfolobus solfataricus/enzimologíaRESUMEN
In all three domains of life, DNA replication begins at specialized loci termed replication origins. In bacteria, replication initiates from a single, clearly defined site. In contrast, eukaryotic organisms exploit a multitude of replication origins, dividing their genomes into an array of short contiguous units. Recently, the multiple replication origin paradigm has also been demonstrated within the archaeal domain of life, with the discovery that the hyperthermophilic archaeon Sulfolobus has three replication origins. However, the evolutionary mechanism driving the progression from single to multiple origin usage remains unclear. Here, we demonstrate that Aeropyrum pernix, a distant relative of Sulfolobus, has two origins. Comparison with the Sulfolobus origins provides evidence for evolution of replicon complexity by capture of extrachromosomal genetic elements. We additionally identify a previously unrecognized candidate archaeal initiator protein that is distantly related to eukaryotic Cdt1. Our data thus provide evidence that horizontal gene transfer, in addition to its well-established role in contributing to the information content of chromosomes, may fundamentally alter the manner in which the host chromosome is replicated.
Asunto(s)
Cromosomas de Archaea/genética , Replicación del ADN/genética , Evolución Molecular , Herencia Extracromosómica/genética , Origen de Réplica/genética , Aeropyrum/genética , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Huella de ADN , Proteínas de Unión al ADN/genética , Genes Arqueales , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Complejo de Reconocimiento del Origen , Estructura Terciaria de Proteína/genética , Replicón/genética , Mapeo Restrictivo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Sulfolobus acidocaldarius/genética , Sulfolobus solfataricus/genéticaRESUMEN
Although the Archaea exhibit an intriguing combination of bacterial- and eukaryotic-like features, it is not known how these prokaryotic cells segregate their chromosomes before the process of cell division. In the course of our analysis of the third replication origin in the archaeon Sulfolobus solfataricus, we identify and characterise sister chromatid junctions in this prokaryote. This pairing appears to be mediated by hemicatenane-like structures, and we provide evidence that these junctions persist in both replicating and postreplicative cells. These data, in conjunction with fluorescent in situ hybridisation analyses, suggest that Sulfolobus chromosomes have a significant period of postreplicative sister chromatid synapsis, a situation that is more reminiscent of eukaryotic than bacterial chromosome segregation mechanisms.
Asunto(s)
Cromátides/genética , Complejo de Reconocimiento del Origen/genética , Intercambio de Cromátides Hermanas/fisiología , Sulfolobus solfataricus/genética , Cartilla de ADN , Electroforesis en Gel Bidimensional , Citometría de Flujo , Hibridación Fluorescente in Situ , Complejo de Reconocimiento del Origen/metabolismo , Intercambio de Cromátides Hermanas/genéticaRESUMEN
Replication of DNA is essential for the propagation of life. It is somewhat surprising then that, despite the vital nature of this process, cellular organisms show a great deal of variety in the mechanisms that they employ to ensure appropriate genome duplication. This diversity is manifested along classical evolutionary lines, with distinct combinations of replicon architecture and replication proteins being found in the three domains of life: the Bacteria, the Eukarya and the Archaea. Furthermore, although there are mechanistic parallels, even within a given domain of life, the way origins of replication are defined shows remarkable variation.
Asunto(s)
Archaea/genética , Bacterias/genética , Replicación del ADN/fisiología , Células Eucariotas/fisiología , Evolución Molecular , Origen de Réplica , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genéticaRESUMEN
Eukaryotic chromosomes possess multiple origins of replication, whereas bacterial chromosomes are replicated from a single origin. The archaeon Pyrococcus abyssi also appears to have a single origin, suggesting a common rule for prokaryotes. However, in the current work, we describe the identification of two active origins of replication in the single chromosome of the hyperthermophilic archaeon Sulfolobus solfataricus. Further, we identify conserved sequence motifs within the origins that are recognized by a family of three Sulfolobus proteins that are homologous to the eukaryotic initiator proteins Orc1 and Cdc6. We demonstrate that the two origins are recognized by distinct subsets of these Orc1/Cdc6 homologs. These data, in conjunction with an analysis of the levels of the three Orc1/Cdc6 proteins in different growth phases and cell cycle stages, lead us to propose a model for the roles for these proteins in modulating origin activity.
Asunto(s)
Proteínas Arqueales/aislamiento & purificación , Cromosomas de Archaea/genética , Replicación del ADN/genética , Origen de Réplica/genética , Proteínas de Saccharomyces cerevisiae , Sulfolobus/genética , Proteínas Arqueales/genética , Sitios de Unión/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/aislamiento & purificación , Mapeo Cromosómico , ADN Complementario/análisis , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Evolución Molecular , Datos de Secuencia Molecular , Complejo de Reconocimiento del Origen , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido NucleicoRESUMEN
We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.
Asunto(s)
Reparación del ADN , Endodesoxirribonucleasas/fisiología , Exodesoxirribonucleasas/fisiología , Duplicación de Gen/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Secuencia de Aminoácidos , Animales , Arabidopsis , Daño del ADN , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Humanos , Metilmetanosulfonato/farmacología , Fenotipo , Fleomicinas/farmacología , Mutación Puntual , Alineación de Secuencia , Trypanosoma brucei brucei/efectos de los fármacos , Xenopus laevisRESUMEN
Trypanosome antigenic variation, involving differential expression of variant surface glycoprotein (VSG) genes, has a strong association with telomeres and with DNA recombination. All expressed VSGs are telomeric, and differential activation involves recombination into the telomeric environment or silencing/activation of subtelomeric promoters. A number of pathogen contingency gene systems associated with immune evasion involve telomeric loci, which has prompted speculation that chromosome ends provide conditions conducive for the operation of rapid gene switching mechanisms. Ku is a protein associated with eukaryotic telomeres that is directly involved in DNA recombination and in gene silencing. We have tested the hypothesis that Ku in trypanosomes is centrally involved in differential VSG expression. We show, via the generation of null mutants, that trypanosome Ku is closely involved in telomere length maintenance, more so for a transcriptionally active than an inactive telomere, but exhibits no detectable influence on DNA double strand break repair. The absence of Ku and the consequent great shortening of telomeres had no detectable influence either on the rate of VSG switching or on the silencing of the telomeric promoters of the VSG subset that is expressed in the tsetse fly.