Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 224(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34842918

RESUMEN

Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.


Asunto(s)
Fototransducción , Opsinas de Bastones , Animales , Ratones , Ratas , Retina , Células Ganglionares de la Retina
2.
PLoS One ; 16(10): e0257436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34653198

RESUMEN

In mammals, the photopigment melanopsin (Opn4) is found in a subset of retinal ganglion cells that serve light detection for circadian photoentrainment and pupil constriction (i.e., mydriasis). For a given species, the efficiency of photoentrainment and length of time that mydriasis occurs is determined by the spectral sensitivity and deactivation kinetics of melanopsin, respectively, and to date, neither of these properties have been described in marine mammals. Previous work has indicated that the absorbance maxima (λmax) of marine mammal rhodopsins (Rh1) have diversified to match the available light spectra at foraging depths. However, similar to the melanopsin λmax of terrestrial mammals (~480 nm), the melanopsins of marine mammals may be conserved, with λmax values tuned to the spectrum of solar irradiance at the water's surface. Here, we investigated the Opn4 pigments of 17 marine mammal species inhabiting diverse photic environments including the Infraorder Cetacea, as well as the Orders Sirenia and Carnivora. Both genomic and cDNA sequences were used to deduce amino acid sequences to identify substitutions most likely involved in spectral tuning and deactivation kinetics of the Opn4 pigments. Our results show that there appears to be no amino acid substitutions in marine mammal Opn4 opsins that would result in any significant change in λmax values relative to their terrestrial counterparts. We also found some marine mammal species to lack several phosphorylation sites in the carboxyl terminal domain of their Opn4 pigments that result in significantly slower deactivation kinetics, and thus longer mydriasis, compared to terrestrial controls. This finding was restricted to cetacean species previously found to lack cone photoreceptor opsins, a condition known as rod monochromacy. These results suggest that the rod monochromat whales rely on extended pupillary constriction to prevent photobleaching of the highly photosensitive all-rod retina when moving between photopic and scotopic conditions.


Asunto(s)
Carnívoros/metabolismo , Cetáceos/metabolismo , Opsinas de Bastones/metabolismo , Sirenia/metabolismo , Secuencia de Aminoácidos , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Caniformia/genética , Caniformia/metabolismo , Carnívoros/genética , Cetáceos/genética , Cinética , Modelos Moleculares , Filogenia , Opsinas de Bastones/química , Opsinas de Bastones/genética , Alineación de Secuencia , Sirenia/genética
3.
Vis Neurosci ; 37: E010, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33028451
5.
Invest Ophthalmol Vis Sci ; 61(12): 10, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049058

RESUMEN

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the visual pigment melanopsin regulate non-image-forming visual tasks, such as circadian photoentrainment and pupil constriction, as well as contrast detection for image formation. Sustained ipRGC function throughout the day is, therefore, of great importance. Melanopsin is a bistable rhabdomeric-type (R-type) visual pigment, which is thought to use light to regenerate its chromophore from all-trans-retinal back to 11-cis-retinal and does not depend on constant chromophore supply to the extent required by visual pigment in rod and cone photoreceptors. Like the majority of photopigments and G-protein-coupled receptors (GPCRs), melanopsin deactivation requires C-terminal phosphorylation and subsequent ß-arrestin binding. We hypothesize that melanopsin utilizes canonical GPCR resensitization mechanisms, including dephosphorylation and endocytosis, during the light, and together, they provide a mechanism for prolonged light responses. Methods: Here, we examined expression of protein phosphatases from a variety of subfamilies by RT-PCR and immunohistochemical analyses of the mouse retina. The expression of protein phosphatase 2A (PP2A) in ipRGCs was assessed. We also examine the role of phosphatase and endocytic activity in sustaining melanopsin signaling using transiently-transfected HEK293 cells. Results: Our analyses suggest that melanopsin-mediated light responses can be rapidly and extensively enhanced by PP2A activity. Light-activated melanopsin undergoes endocytosis in a clathrin-dependent manner. This endocytic activity enhances light responses upon repeated stimulation, implicating a role for endocytic activity in resensitization. Conclusions: Thus, we propose that melanopsin phototransduction is maintained by utilizing canonical GPCR resensitization mechanisms rather than reliance on chromophore replenishment from supporting cells.


Asunto(s)
Clatrina/fisiología , Endocitosis/fisiología , Regulación de la Expresión Génica/fisiología , Proteína Fosfatasa 2/fisiología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Señalización del Calcio/fisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Estimulación Luminosa , Plásmidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Ganglionares de la Retina/efectos de la radiación , Transfección , Visión Ocular/fisiología
6.
Biophys J ; 119(2): 389-401, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32621866

RESUMEN

Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and ß-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.


Asunto(s)
Fototransducción , Opsinas de Bastones , Animales , Luz , Ratones , Fosforilación , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo
7.
PLoS One ; 15(4): e0228121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32236094

RESUMEN

Melanopsin is a visual pigment expressed in a small subset of ganglion cells in the mammalian retina known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and is implicated in regulating non-image forming functions such as circadian photoentrainment and pupil constriction and contrast sensitivity in image formation. Mouse melanopsin's Carboxy-terminus (C-terminus) possesses 38 serine and threonine residues, which can potentially serve as phosphorylation sites for a G-protein Receptor Kinase (GRK) and be involved in the deactivation of signal transduction. Previous studies suggest that S388, T389, S391, S392, S394, S395 on the proximal region of the C-terminus of mouse melanopsin are necessary for melanopsin deactivation. We expressed a series of mouse melanopsin C-terminal mutants in HEK293 cells and using calcium imaging, and we found that the necessary cluster of six serine and threonine residues, while being critical, are insufficient for proper melanopsin deactivation. Interestingly, the additional six serine and threonine residues adjacent to the required six sites, in either proximal or distal direction, are capable of restoring wild-type deactivation of melanopsin. These findings suggest an element of plasticity in the molecular basis of melanopsin phosphorylation and deactivation. In addition, C-terminal chimeric mutants and molecular modeling studies support the idea that the initial steps of deactivation and ß-arrestin binding are centered around these critical phosphorylation sites (S388-S395). The degree of functional versatility described in this study, along with ipRGC biophysical heterogeneity and the possible use of multiple signal transduction cascades, might contribute to the diverse ipRGC light responses for use in non-image and image forming behaviors, even though all six sub types of ipRGCs express the same melanopsin gene OPN4.


Asunto(s)
Fototransducción/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Opsinas de Bastones/metabolismo , beta-Arrestina 1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Fosforilación/fisiología , Unión Proteica , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Proteínas Recombinantes de Fusión/genética , Opsinas de Bastones/química , Opsinas de Bastones/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , beta-Arrestina 1/química
8.
Vis Neurosci ; 36: E011, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31718726

RESUMEN

The spectral tuning properties of the whale shark (Rhincodon typus) rod (rhodopsin or Rh1) and long-wavelength-sensitive (LWS) cone visual pigments were examined to determine whether these retinal pigments have adapted to the broadband light spectrum available for surface foraging or to the narrowband blue-shifted light spectrum available at depth. Recently published whale shark genomes have identified orthologous genes for both the whale shark Rh1 and LWS cone opsins suggesting a duplex retina. Here, the whale shark Rh1 and LWS cone opsin sequences were examined to identify amino acid residues critical for spectral tuning. Surprisingly, the predicted absorbance maximum (λmax) for both the whale shark Rh1 and LWS visual pigments is near 500 nm. Although Rh1 λmax values near 500 nm are typical of terrestrial vertebrates, as well as surface foraging fish, it is uncommon for a vertebrate LWS cone pigment to be so greatly blue-shifted. We propose that the spectral tuning properties of both the whale shark Rh1 and LWS cone pigments are most likely adaptations to the broadband light spectrum available at the surface. Whale shark melanopsin (Opn4) deactivation kinetics was examined to better understand the underlying molecular mechanisms of the pupillary light reflex. Results show that the deactivation rate of whale shark Opn4 is similar to the Opn4 deactivation rate from vertebrates possessing duplex retinae and is significantly faster than the Opn4 deactivation rate from an aquatic rod monochromat lacking functional cone photoreceptors. The rapid deactivation rate of whale shark Opn4 is consistent with a functional cone class and would provide the animal with an exponential increase in the number of photons required for photoreceptor signaling when transitioning from photopic to scotopic light conditions, as is the case when diving.


Asunto(s)
Opsinas de los Conos/fisiología , Fenómenos Ópticos , Células Fotorreceptoras Retinianas Conos/fisiología , Rodopsina/fisiología , Tiburones/fisiología , Animales
9.
Proc Natl Acad Sci U S A ; 114(10): 2741-2746, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223508

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and mediate several non-image-forming visual functions, including circadian photoentrainment and the pupillary light reflex (PLR). ipRGCs act as autonomous photoreceptors via the intrinsic melanopsin-based phototransduction pathway and as a relay for rod/cone input via synaptically driven responses. Under low light intensities, where only synaptically driven rod/cone input activates ipRGCs, the duration of the ipRGC response will be determined by the termination kinetics of the rod/cone circuits. Little is known, however, about the termination kinetics of the intrinsic melanopsin-based phototransduction pathway and its contribution to several melanopsin-mediated behaviors. Here, we show that C-terminal phosphorylation of melanopsin determines the recovery kinetics of the intrinsic melanopsin-based photoresponse in ipRGCs, the duration of the PLR, and the speed of reentrainment. In contrast, circadian phase alignment and direct effects of light on activity (masking) are not influenced by C-terminal phosphorylation of melanopsin. Electrophysiological measurements demonstrate that expression of a virally encoded melanopsin lacking all C-terminal phosphorylation sites (C terminus phosphonull) leads to a prolonged intrinsic light response. In addition, mice expressing the C terminus phosphonull in ipRGCs reentrain faster to a delayed light/dark cycle compared with mice expressing virally encoded WT melanopsin; however, the phase angle of entrainment and masking were indistinguishable. Importantly, a sustained PLR in the phosphonull animals is only observed at brighter light intensities that activate melanopsin phototransduction, but not at dimmer light intensities that activate only the rod/cone pathway. Taken together, our results highlight how the kinetics of the melanopsin photoresponse differentially regulate distinct light-mediated behaviors.


Asunto(s)
Conducta Animal , Fototransducción/genética , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Ritmo Circadiano/genética , Cinética , Luz , Fototransducción/fisiología , Ratones , Técnicas de Placa-Clamp , Fosforilación/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Reflejo Pupilar/genética , Reflejo Pupilar/fisiología , Retina/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/química , Opsinas de Bastones/genética , Sinapsis/genética , Sinapsis/metabolismo , Visión Ocular/genética , Visión Ocular/fisiología
10.
Elife ; 52016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27669145

RESUMEN

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.


Asunto(s)
Luz , Células Fotorreceptoras/fisiología , Células Fotorreceptoras/efectos de la radiación , Pupila/fisiología , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Ácido Glutámico/metabolismo , Neurotransmisores/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo
11.
PLoS One ; 9(11): e113138, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401926

RESUMEN

In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated. The role of melanopsin phosphorylation and ß-arrestin binding in this adaptive process is suggested by the phosphorylation-dependent reduction of melanopsin signaling in vitro and the ubiquitous expression of ß-arrestin in the retina. These observations, along with the conspicuous absence of visual arrestin in ipRGCs, suggest that a ß-arrestin terminates melanopsin signaling. Here, we describe a light- and phosphorylation- dependent reduction in melanopsin signaling mediated by both ß-arrestin 1 and ß-arrestin 2. Using an in vitro calcium imaging assay, we demonstrate that increasing the cellular concentration of ß-arrestin 1 and ß-arrestin 2 significantly increases the rate of deactivation of light-activated melanopsin in HEK293 cells. Furthermore, we show that this response is dependent on melanopsin carboxyl-tail phosphorylation. Crosslinking and co-immunoprecipitation experiments confirm ß-arrestin 1 and ß-arrestin 2 bind to melanopsin in a light- and phosphorylation- dependent manner. These data are further supported by proximity ligation assays (PLA), which demonstrate a melanopsin/ß-arrestin interaction in HEK293 cells and ipRGCs. Together, these results suggest that melanopsin signaling is terminated in a light- and phosphorylation-dependent manner through the binding of a ß-arrestin within the retina.


Asunto(s)
Arrestinas/metabolismo , Luz , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/antagonistas & inhibidores , Opsinas de Bastones/fisiología , Animales , Arrestinas/genética , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Fosforilación , Estimulación Luminosa/métodos , Reacción en Cadena de la Polimerasa , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal , beta-Arrestina 1 , Arrestina beta 2 , beta-Arrestinas
12.
J Exp Biol ; 217(Pt 21): 3883-90, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25267845

RESUMEN

Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate whether the ocular media (i.e. the lens and cornea) absorb UV radiation. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, whereas the cone visual pigment λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2) and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cut-off wavelength (λcut) values similarly fell within ranges recorded in other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type) and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system; however, as a consequence of the λmax of the SWS1 visual pigment (404 nm), it might also have some UV sensitivity.


Asunto(s)
Aves/fisiología , Gotas Lipídicas/metabolismo , Fenómenos Fisiológicos Oculares , Opsinas/análisis , Retina/química , Animales , Aves/genética , Aves/metabolismo , Córnea/fisiología , Córnea/efectos de la radiación , Cristalino/fisiología , Cristalino/efectos de la radiación , Microespectrofotometría , Rayos Ultravioleta
13.
Biochemistry ; 53(16): 2644-9, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24678795

RESUMEN

Light-activated opsins undergo carboxy-terminal phosphorylation, which contributes to the deactivation of their photoresponse. The photopigment melanopsin possesses an unusually long carboxy tail containing 37 serine and threonine sites that are potential sites for phosphorylation by a G-protein dependent kinase (GRK). Here, we show that a small cluster of six to seven sites is sufficient for deactivation of light-activated mouse melanopsin. Surprisingly, these sites are distinct from those that regulate deactivation of rhodopsin. In zebrafish, there are five different melanopsin genes that encode proteins with distinct carboxy-terminal domains. Naturally occurring changes in the same cluster of phosphorylatable amino acids provides diversity in the deactivation kinetics of the zebrafish proteins. These results suggest that variation in phosphorylation sites provides flexibility in the duration and kinetics of melanopsin-mediated light responses.


Asunto(s)
Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Cinética , Luz , Ratones , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Fosforilación , Estructura Terciaria de Proteína , Opsinas de Bastones/genética , Proteínas de Pez Cebra/genética
14.
PLoS One ; 7(9): e45387, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049792

RESUMEN

The visual pigment melanopsin is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina, where it is involved in non-image forming light responses including circadian photoentrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep. It has recently been shown that the melanopsin-based light response in ipRGCs is attenuated by the neurotransmitter dopamine. Here, we use a heterologous expression system to demonstrate that mouse melanopsin can be phosphorylated by protein kinase A, and that phosphorylation can inhibit melanopsin signaling in HEK cells. Site-directed mutagenesis experiments revealed that this inhibitory effect is primarily mediated by phosphorylation of sites T186 and S287 located in the second and third intracellular loops of melanopsin, respectively. Furthermore, we show that this phosphorylation can occur in vivo using an in situ proximity-dependent ligation assay (PLA). Based on these data, we suggest that the attenuation of the melanopsin-based light response by dopamine is mediated by direct PKA phosphorylation of melanopsin, rather than phosphorylation of a downstream component of the signaling cascade.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Ganglionares de la Retina/enzimología , Opsinas de Bastones/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dopamina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Células HEK293 , Humanos , Luz , Fototransducción/efectos de los fármacos , Fototransducción/efectos de la radiación , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosforilación , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/efectos de la radiación , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Transfección
15.
Proc Biol Sci ; 279(1726): 3-14, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22012981

RESUMEN

Opsin proteins are essential molecules in mediating the ability of animals to detect and use light for diverse biological functions. Therefore, understanding the evolutionary history of opsins is key to understanding the evolution of light detection and photoreception in animals. As genomic data have appeared and rapidly expanded in quantity, it has become possible to analyse opsins that functionally and histologically are less well characterized, and thus to examine opsin evolution strictly from a genetic perspective. We have incorporated these new data into a large-scale, genome-based analysis of opsin evolution. We use an extensive phylogeny of currently known opsin sequence diversity as a foundation for examining the evolutionary distributions of key functional features within the opsin clade. This new analysis illustrates the lability of opsin protein-expression patterns, site-specific functionality (i.e. counterion position) and G-protein binding interactions. Further, it demonstrates the limitations of current model organisms, and highlights the need for further characterization of many of the opsin sequence groups with unknown function.


Asunto(s)
Evolución Molecular , Invertebrados/genética , Opsinas/genética , Vertebrados/genética , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Proteínas de Unión al GTP/metabolismo , Invertebrados/metabolismo , Fototransducción , Opsinas/química , Opsinas/clasificación , Opsinas/metabolismo , Filogenia , Vertebrados/metabolismo
16.
Proc Biol Sci ; 279(1727): 387-93, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21697177

RESUMEN

The peak sensitivities (λ(max)) of the short-wavelength-sensitive-1 (SWS1) pigments in mammals range from the ultraviolet (UV) (360-400 nm) to the violet (400-450 nm) regions of the spectrum. In most cases, a UV or violet peak is determined by the residue present at site 86, with Phe conferring UV sensitivity (UVS) and either Ser, Tyr or Val causing a shift to violet wavelengths. In primates, however, the tuning mechanism of violet-sensitive (VS) pigments would appear to differ. In this study, we examine the tuning mechanisms of prosimian SWS1 pigments. One species, the aye-aye, possesses a pigment with Phe86 but in vitro spectral analysis reveals a VS rather than a UVS pigment. Other residues (Cys, Ser and Val) at site 86 in prosimians also gave VS pigments. Substitution at site 86 is not, therefore, the primary mechanism for the tuning of VS pigments in primates, and phylogenetic analysis indicates that substitutions at site 86 have occurred at least five times in primate evolution. The sole potential tuning site that is conserved in all primate VS pigments is Pro93, which when substituted by Thr (as found in mammalian UVS pigments) in the aye-aye pigment shifted the peak absorbance into the UV region with a λ(max) value at 371 nm. We, therefore, conclude that the tuning of VS pigments in primates depends on Pro93, not Tyr86 as in other mammals. However, it remains uncertain whether the initial event that gave rise to the VS pigment in the ancestral primate was achieved by a Thr93Pro or a Phe86Tyr substitution.


Asunto(s)
Evolución Molecular , Pigmentos Retinianos/química , Strepsirhini/fisiología , Animales , Visión de Colores , Humanos , Luz , Primates/fisiología , Pigmentos Retinianos/genética , Rayos Ultravioleta
17.
Cell Mol Life Sci ; 69(9): 1551-62, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22159583

RESUMEN

Melanopsin-based phototransduction is involved in non-image forming light responses including circadian entrainment, pupil constriction, suppression of pineal melatonin synthesis, and direct photic regulation of sleep in vertebrates. Given that the functions of melanopsin involve the measurement and summation of total environmental luminance, there would appear to be no need for the rapid deactivation typical of other G-protein coupled receptors. In this study, however, we demonstrate that heterologously expressed mouse melanopsin is phosphorylated in a light-dependent manner, and that this phosphorylation is involved in regulating the rate of G-protein activation and the lifetime of melanopsin's active state. Furthermore, we provide evidence for light-dependent phosphorylation of melanopsin in the mouse retina using an in situ proximity ligation assay. Finally, we demonstrate that melanopsin preferentially interacts with the GRK2/3 family of G-protein coupled receptor kinases through co-immunoprecipitation assays. Based on the complement of G-protein receptor kinases present in the melanopsin-expressing retinal ganglion cells, GRK2 emerges as the best candidate for melanopsin's cognate GRK.


Asunto(s)
Opsinas de Bastones/química , Opsinas de Bastones/efectos de la radiación , Animales , Señalización del Calcio , Quinasa 2 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 3 del Receptor Acoplado a Proteína-G/antagonistas & inhibidores , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Quinasa 3 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Humanos , Técnicas In Vitro , Luz , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Fosforilación , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Retina/química , Retina/metabolismo , Retina/efectos de la radiación , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/metabolismo , Visión Ocular
18.
PLoS One ; 6(9): e25111, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966429

RESUMEN

Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.


Asunto(s)
Fotoperiodo , Opsinas de Bastones/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Regulación de la Expresión Génica , Larva/genética , Larva/metabolismo , Filogenia , Glándula Pineal/metabolismo , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Pez Cebra/genética , Proteínas de Pez Cebra/clasificación , Proteínas de Pez Cebra/genética
19.
Vis Neurosci ; 26(3): 255-65, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19534844

RESUMEN

Stomatopod crustaceans possess apposition compound eyes that contain more photoreceptor types than any other animal described. While the anatomy and physiology of this complexity have been studied for more than two decades, few studies have investigated the molecular aspects underlying the stomatopod visual complexity. Based on previous studies of the structure and function of the different types of photoreceptors, stomatopod retinas are hypothesized to contain up to 16 different visual pigments, with 6 of these having sensitivity to middle or long wavelengths of light. We investigated stomatopod middle- and long-wavelength-sensitive opsin genes from five species with the hypothesis that each species investigated would express up to six different opsin genes. In order to understand the evolution of this class of stomatopod opsins, we examined the complement of expressed transcripts in the retinas of species representing a broad taxonomic range (four families and three superfamilies). A total of 54 unique retinal opsins were isolated, resulting in 6-15 different expressed transcripts in each species. Phylogenetically, these transcripts form six distinct clades, grouping with other crustacean opsins and sister to insect long-wavelength visual pigments. Within these stomatopod opsin groups, intra- and interspecific clusters of highly similar transcripts suggest that there has been rampant recent gene duplication. Some of the observed molecular diversity is also due to ancient gene duplication events within the stem crustacean lineage. Using evolutionary trace analysis, 10 amino acid sites were identified as functionally divergent among the six stomatopod opsin clades. These sites form tight clusters in two regions of the opsin protein known to be functionally important: six in the chromophore-binding pocket and four at the cytoplasmic surface in loops II and III. These two clusters of sites indicate that stomatopod opsins have diverged with respect to both spectral tuning and signal transduction.


Asunto(s)
Crustáceos/genética , Evolución Molecular , Opsinas/genética , Secuencia de Aminoácidos , Animales , Duplicación de Gen , Datos de Secuencia Molecular , Opsinas/metabolismo , Filogenia , Retina/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(26): 8861-5, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18579788

RESUMEN

In mammals, melanopsin is exclusively expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs), which play an important role in circadian photoentrainment and other nonimage-forming functions. These ipRGCs reside in the inner retina, far removed from the pigment epithelium, which synthesizes the 11-cis retinal chromophore used by rod and cone photoreceptors to regenerate opsin for light detection. There has been considerable interest in the identification of the melanopsin chromophore and in understanding the process of photopigment regeneration in photoreceptors that are not in proximity to the classical visual cycle. We have devised an immuno-magnetic purification protocol that allows melanopsin-expressing retinal ganglion cells to be isolated and collected from multiple mouse retinas. Using this technique, we have demonstrated that native melanopsin in vivo exclusively binds 11-cis retinal in the dark and that illumination causes isomerization to the all-trans isoform. Furthermore, spectral analysis of the melanopsin photoproduct shows the formation of a protonated metarhodopsin with a maximum absorbance between 520 and 540 nm. These results indicate that even if melanopsin functions as a bistable photopigment with photo-regenerative activity native melanopsin must also use some other light-independent retinoid regeneration mechanism to return to the dark state, where all of the retinal is observed to be in the 11-cis form.


Asunto(s)
Fotoquímica , Retina/metabolismo , Opsinas de Bastones/metabolismo , Animales , Separación Celular , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica , Inmunohistoquímica , Separación Inmunomagnética , Ratones , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo , Opsinas de Bastones/genética , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA