Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38051475

RESUMEN

The leading cause of death worldwide and a significant factor in decreased quality of life are the cardiovascular diseases. Endovascular operations like angioplasty, stent placement, or atherectomy are often used in vascular surgery to either dilate a narrowed blood artery or remove a blockage. As an alternative, a vascular transplant may be utilised to replace or bypass a dysfunctional or blocked blood vessel. Despite the advancements in endovascular surgery and its popularisation over the past few decades, vascular bypass grafting remains prevalent and is considered the best option for patients in need of long-term revascularisation treatments. Consequently, the demand for synthetic vascular grafts composed of biocompatible materials persists. To address this need, biodegradable clopidogrel (CLOP)-loaded vascular grafts have been fabricated using the digital light processing (DLP) 3D printing technique. A mixture of polylactic acid-polyurethane acrylate (PLA-PUA), low molecular weight polycaprolactone (L-PCL), and CLOP was used to achieve the required mechanical and biological properties for vascular grafts. The 3D printing technology provides precise detail in terms of shape and size, which lead to the fabrication of customised vascular grafts. The fabricated vascular grafts were fully characterised using different techniques, and finally, the drug release was evaluated. Results suggested that the performed 3D-printed small-diameter vascular grafts containing the highest CLOP cargo (20% w/w) were able to provide a sustained drug release for up to 27 days. Furthermore, all the CLOP-loaded 3D-printed materials resulted in a substantial reduction of the platelet deposition across their surface compared to the blank materials containing no drug. Haemolysis percentage for all the 3D-printed samples was lower than 5%. Moreover, 3D-printed materials were able to provide a supportive environment for cellular attachment, viability, and growth. A substantial increase in cell growth was detected between the blank and drug-loaded grafts.

2.
Adv Drug Deliv Rev ; 198: 114859, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149039

RESUMEN

Modern pharmaceutical interventions are shifting from traditional "one-size-fits-all" approaches toward tailored therapies. Following the regulatory approval of Spritam®, the first marketed drug manufactured using three-dimensional printing (3DP) technologies, there is a precedence set for the use of 3DP in the manufacture of pharmaceutical products. The involvement of 3DP technologies in pharmaceutical research has demonstrated its capabilities in enabling the customisation of characteristics such as drug dosing, release characteristics and product designs on an individualised basis. Nonetheless, research into 3DP implantable drug delivery devices lags behind that for oral devices, cell-based therapies and tissue engineering applications. The recent efforts and initiatives to address the disparity in women's health is overdue but should provide a drive for more research into this area, especially using new and emerging technologies as 3DP. Therefore, the focus of this review has been placed on the unique opportunity of formulating personalised implantable drug delivery systems using 3DP for women's health applications, particularly passive implants. An evaluation of the current landscape and key formulation challenges for achieving this is provided supplemented with critical insight into the current global regulatory status and its outlook.


Asunto(s)
Sistemas de Liberación de Medicamentos , Farmacia , Femenino , Humanos , Sistemas de Liberación de Medicamentos/métodos , Impresión Tridimensional , Preparaciones Farmacéuticas , Medicina de Precisión/métodos , Tecnología Farmacéutica/métodos
3.
J Control Release ; 329: 743-757, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33031881

RESUMEN

Three-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided. The challenges and drawbacks presented by this technology are also discussed. It is forecast that the adoption of 3D printing could pave the way for a personalised health system, advancing from traditional treatments pathways towards digital healthcare.


Asunto(s)
Preparaciones Farmacéuticas , Impresión Tridimensional , Sistemas de Liberación de Medicamentos
4.
Pharmaceutics ; 11(6)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212649

RESUMEN

Three-dimensional printing (3DP) has demonstrated great potential for multi-material fabrication because of its capability for printing bespoke and spatially separated material conformations. Such a concept could revolutionise the pharmaceutical industry, enabling the production of personalised, multi-layered drug products on demand. Here, we developed a novel stereolithographic (SLA) 3D printing method that, for the first time, can be used to fabricate multi-layer constructs (polypills) with variable drug content and/or shape. Using this technique, six drugs, including paracetamol, caffeine, naproxen, chloramphenicol, prednisolone and aspirin, were printed with different geometries and material compositions. Drug distribution was visualised using Raman microscopy, which showed that whilst separate layers were successfully printed, several of the drugs diffused across the layers depending on their amorphous or crystalline phase. The printed constructs demonstrated excellent physical properties and the different material inclusions enabled distinct drug release profiles of the six actives within dissolution tests. For the first time, this paper demonstrates the feasibility of SLA printing as an innovative platform for multi-drug therapy production, facilitating a new era of personalised polypills.

5.
Int J Pharm ; 494(2): 657-663, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25934428

RESUMEN

The aim of this work was to explore the feasibility of combining hot melt extrusion (HME) with 3D printing (3DP) technology, with a view to producing different shaped tablets which would be otherwise difficult to produce using traditional methods. A filament extruder was used to obtain approx. 4% paracetamol loaded filaments of polyvinyl alcohol with characteristics suitable for use in fused-deposition modelling 3DP. Five different tablet geometries were successfully 3D-printed-cube, pyramid, cylinder, sphere and torus. The printing process did not affect the stability of the drug. Drug release from the tablets was not dependent on the surface area but instead on surface area to volume ratio, indicating the influence that geometrical shape has on drug release. An erosion-mediated process controlled drug release. This work has demonstrated the potential of 3DP to manufacture tablet shapes of different geometries, many of which would be challenging to manufacture by powder compaction.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Impresión Tridimensional/instrumentación , Tecnología Farmacéutica/instrumentación , Acetaminofén/administración & dosificación , Liberación de Fármacos , Estabilidad de Medicamentos , Calor , Humanos , Alcohol Polivinílico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...