Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(1): e0273586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36689403

RESUMEN

Diaphanous related formins are regulatory cytoskeletal protein involved in actin elongation and microtubule stabilization. In humans, defects in two of the three diaphanous genes (DIAPH1 and DIAPH3) have been associated with different types of hearing loss. Here, we investigate the role of the third member of the family, DIAPH2, in nonsyndromic hearing loss, prompted by the identification, by exome sequencing, of a predicted pathogenic missense variant in DIAPH2. This variant occurs at a conserved site and segregated with nonsyndromic X-linked hearing loss in an Italian family. Our immunohistochemical studies indicated that the mouse ortholog protein Diaph2 is expressed during development in the cochlea, specifically in the actin-rich stereocilia of the sensory outer hair cells. In-vitro studies showed a functional impairment of the mutant DIAPH2 protein upon RhoA-dependent activation. Finally, Diaph2 knock-out and knock-in mice were generated by CRISPR/Cas9 technology and auditory brainstem response measurements performed at 4, 8 and 14 weeks. However, no hearing impairment was detected. Our findings indicate that DIAPH2 may play a role in the inner ear; further studies are however needed to clarify the contribution of DIAPH2 to deafness.


Asunto(s)
Actinas , Pérdida Auditiva , Humanos , Ratones , Animales , Forminas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo
2.
Cells ; 11(11)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681420

RESUMEN

Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.


Asunto(s)
Sordera , Proteínas de Drosophila , Pérdida Auditiva , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Sordera/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Forminas , Pérdida Auditiva/genética
3.
Front Cell Dev Biol ; 9: 778677, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901024

RESUMEN

Background: Psoriatic disease is a multifactorial inflammatory condition spanning from skin and nail psoriasis (Pso) to spine and joint involvement characterizing psoriatic arthritis (PsA). Monozygotic twins provide a model to investigate genetic, early life environmental exposure and stochastic influences to complex diseases, mainly mediated by epigenetics. Methods: We performed a genome-wide DNA methylation study on whole blood of monozygotic twins from 7 pairs discordant for Pso/PsA using the Infinium Methylation EPIC array (Illumina). MeDiP-qPCR was used to confirm specific signals. Data were replicated in an independent cohort of seven patients with Pso/PsA and 3 healthy controls. Transcriptomic profiling was performed by RNAsequence on the same 7 monozygotic twin pairs. Results: We identified 2,564 differentially methylated positions between psoriatic disease and controls, corresponding to 1,703 genes, 59% within gene bodies. There were 19 regions with at least two DMPs within 1 kb of distance and significant within-pair Δß-values (p < 0.005), among them SNX25, BRG1 and SMAD3 genes, all involved in TGF-ß signaling pathway, were identified. Co-expression analyses on transcriptome data identified IL-6/JAK/STAT3 and TNF-α pathways as important signaling axes involved in the disease, and they also suggested an altered glucose metabolism in patients' immune cells, characteristic of pro-inflammatory T lymphocytes. Conclusion: The study suggests the presence of an epigenetic signature in affected individuals, pointing to genes involved in immunological and inflammatory responses. This result is also supported by transcriptome data, that altogether suggest a higher activation state of the immune system, that could promote the disease status.

4.
Front Genet ; 12: 606630, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643381

RESUMEN

Inherited hearing loss is extremely heterogeneous both clinically and genetically. In addition, the spectrum of deafness-causing genetic variants differs greatly among geographical areas and ethnicities. The identification of the causal mutation in affected families allows early diagnosis, clinical follow-up, and genetic counseling. A large consanguineous family of Moroccan origin affected by autosomal recessive sensorineural hearing loss (ARSNHL) was subjected to genome-wide linkage analysis and exome sequencing. Exome-wide variant analysis and prioritization identified the SLC22A4 p.C113Y missense variant (rs768484124) as the most likely cause of ARSNHL in the family, falling within the unique significant (LOD score>3) linkage region on chromosome 5. Indeed, the same variant was previously reported in two Tunisian ARSNHL pedigrees. The variant is present in the homozygous state in all six affected individuals, but also in one normal-hearing sibling, suggesting incomplete penetrance. The mutation is absent in about 1,000 individuals from the Greater Middle East Variome study cohort, including individuals from the North African population, as well as in an additional seven deaf patients from the same geographical area, recruited and screened for mutations in the SLC22A4 gene. This study represents the first independent replication of the involvement of SLC22A4 in ARSNHL, highlighting the importance of the gene, and of the p.C113Y mutation, at least in the Northwest African population.

5.
Front Med (Lausanne) ; 7: 580376, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330536

RESUMEN

Objectives: X-linked Alport syndrome (XLAS) females are at risk of developing proteinuria and chronic kidney damage (CKD). The aim of this study is to evaluate the genotype-phenotype correlation in this rare population. Materials and Methods: This is a prospective, observational study of XLAS females, confirmed by a pathogenic mutation in COL4A5 and renal ultrastructural evaluation. Proteinuria, renal function and extrarenal involvement were monitored during follow-up. Patients were divided in 2 groups, according to mutations in COL4A5: missense (Group 1) and non-missense variants (Group 2). Results: Twenty-four XLAS females, aged 10.6 ± 10.4 years at clinical onset (mean follow-up: 13.1 ± 12.6 years) were recruited between 2000 and 2017 at a single center. In group 1 there were 10 patients and in group 2, 14 (mean age at the end of follow-up: 24.9 ± 13.6 and 23.2 ± 13.8 years, respectively). One patient in Group 1 and 9 in Group 2 (p = 0.013) developed proteinuria during follow-up. Mean eGFR at last follow-up was lower in Group 2 (p = 0.027), where two patients developed CKD. No differences in hearing loss were documented among the two groups. Two patients in Group 2 carried one mutation in both COL4A5 and COL4A3 (digenic inheritance) and were proteinuric. In one family, the mother presented only hematuria while the daughter was proteinuric and presented a greater inactivation of the X chromosome carrying the wild-type allele. Conclusions: The appearance of proteinuria and CKD is more frequent in patients with severe variants. Carrying digenic inheritance and skewed XCI seem to be additional risk factors for proteinuria in XLAS females.

6.
PLoS One ; 12(6): e0178630, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28570636

RESUMEN

Alport syndrome (AS) is an inherited progressive renal disease caused by mutations in COL4A3, COL4A4, and COL4A5 genes. Despite simultaneous screening of these genes being widely available, mutation detection still remains incomplete in a non-marginal portion of patients. Here, we applied whole-exome sequencing (WES) in 3 Italian families negative after candidate-gene analyses. In Family 1, we identified a novel heterozygous intronic variant (c.2245-40A>G) -outside the conventionally screened candidate region for diagnosis- potentially disrupting COL4A5 exon29 splicing. Using a minigene-based approach in HEK293 cells we demonstrated that this variant abolishes exon29 branch site, causing exon skipping. Moreover, skewed X-inactivation of the c.2245-40A>G allele correlated with disease severity in heterozygous females. In Family 2, WES highlighted a novel COL4A5 hemizygous missense mutation (p.Gly491Asp), which segregates with the phenotype and impacts on a highly-conserved residue. Finally, in Family 3, we detected a homozygous 24-bp in-frame deletion in COL4A3 exon1 (NM_000091.4:c.30_53del:p.Val11_Leu18del or c.40_63del24:p.Leu14_Leu21del), which is ambiguously annotated in databases, although it corresponds to a recurrent AS mutation. Functional analyses showed that this deletion disrupts COL4A3 signal peptide, possibly altering protein secretion. In conclusion, WES -together with functional studies- was fundamental for molecular diagnosis in 3 AS families, highlighting pathogenic variants that escaped previous screenings.


Asunto(s)
Exoma , Mutación , Nefritis Hereditaria/genética , Análisis de Secuencia/métodos , Adulto , Femenino , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Linaje , Empalme del ARN , Adulto Joven
7.
J Hum Genet ; 61(4): 295-300, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26657938

RESUMEN

Perrault syndrome (MIM #233400) is a rare autosomal recessive disorder characterized by ovarian dysgenesis and primary ovarian insufficiency in females, and progressive hearing loss in both genders. Recently, mutations in five genes (HSD17B4, HARS2, CLPP, LARS2 and C10ORF2) were found to be responsible for Perrault syndrome, although they do not account for all cases of this genetically heterogeneous condition. We used whole-exome sequencing to identify pathogenic variants responsible for Perrault syndrome in an Italian pedigree with two affected siblings. Both patients were compound heterozygous for two novel missense variants within the mitochondrial leucyl-tRNA synthetase (LARS2): NM_015340.3:c.899C>T(p.Thr300Met) and c.1912G>A(p.Glu638Lys). Both variants cosegregated with the phenotype in the family. p.Thr300 and p.Glu638 are evolutionarily conserved residues, and are located, respectively, within the editing domain and immediately before the catalytically important KMSKS motif. Homology modeling using as template the E. coli leucyl-tRNA synthetase provided further insights on the possible pathogenic effects of the identified variants. This represents the first independent replication of the involvement of LARS2 mutations in Perrault syndrome, contributing valuable information for the further understanding of this disease.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Helicasas/genética , Endopeptidasa Clp/genética , Exoma/genética , Femenino , Disgenesia Gonadal 46 XX/patología , Pérdida Auditiva Sensorineural/patología , Humanos , Italia , Proteínas Mitocondriales/genética , Mutación , Linaje , Proteína-2 Multifuncional Peroxisomal/genética
8.
Thromb Res ; 136(1): 168-74, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26006300

RESUMEN

Fibrinogen is a hexameric glycoprotein consisting of two sets of three polypeptides (the Aα, Bß, and γ chains, encoded by the three genes FGA, FGB, and FGG). It is involved in the final phase of the coagulation process, being the precursor of the fibrin monomers necessary for the formation of the hemostatic plug. Rare inherited fibrinogen disorders can manifest as quantitative deficiencies, qualitative defects, or both. In particular, dysfibrinogenemia and hypo-dysfibrinogenemia are characterized by reduced functional activity associated with normal or reduced antigen levels, and are usually determined by heterozygous mutations affecting any of the three fibrinogen genes. In this study, we investigated the genetic basis of dys- and hypo-dysfibrinogenemia in seven unrelated patients. Mutational screening disclosed six different variants, two of which novel (FGB-p.Asp185Asn and FGG-p.Asn230Lys). The molecular characterization of the FGG-p.Asn230Lys mutation, performed by transient expression experiments of the recombinant mutant protein, demonstrated that it induces an almost complete impairment in fibrinogen secretion, according to a molecular mechanism often associated with quantitative fibrinogen disorders. Conversely, the FGB-p.Asp185Asn variant was demonstrated to be a gain-of-glycosylation mutation leading to a hyperglycosylation of the Bß chain, not affecting fibrinogen assembly and secretion. To our knowledge, this is the second gain-of-glycosylation mutation involving the FGB gene.


Asunto(s)
Afibrinogenemia/genética , Fibrinógeno/genética , Mutación , Adulto , Secuencia de Aminoácidos , Animales , Células COS , Niño , Chlorocebus aethiops , Femenino , Fibrinógeno/química , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación Missense , Mutación Puntual , Alineación de Secuencia
9.
Thromb Haemost ; 113(3): 567-76, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25427968

RESUMEN

Fibrinogen is a plasma glycoprotein mainly synthesised by hepatocytes and circulating as a 340-kDa hexamer consisting of two sets of three different polypeptide chains (Aα, Bß, and γ, encoded by the FGA, FGB, and FGG gene, respectively). Congenital afibrinogenaemia and hypofibrinogenaemia are rare bleeding disorders characterised by abnormally low levels of functional and immunoreactive fibrinogen in plasma, associated with haemorrhagic manifestations of variable severity. While afibrinogenaemia is caused by mutations in the homozygous or compound heterozygous state in one of the three fibrinogen genes, hypofibrinogenaemia is generally due to heterozygous mutations, and is usually characterised by a milder phenotype. The mutational spectrum of these quantitative fibrinogen disorders includes large deletions, point mutations causing premature termination codons, and missense mutations often affecting fibrinogen assembly and/or secretion. Here we report the clinical and molecular characterisation of 13 unrelated afibrinogenaemic and eight hypofibrinogenaemic patients, leading to the identification of 17 different mutations (10 hitherto unknown). All the newly-identified missense and splicing mutations werein vitro expressed to verify their pathogenic role. Our data increase the number of mutations causing quantitative fibrinogen deficiencies by about 7 %. The high number of private mutations identified in the analysed probands indicates that the full mutational screening of the three fibrinogen genes is still required for molecular diagnosis.


Asunto(s)
Afibrinogenemia/genética , Coagulación Sanguínea/genética , Fibrinógeno/genética , Mutación , Adulto , Afibrinogenemia/sangre , Afibrinogenemia/diagnóstico , Animales , Pruebas de Coagulación Sanguínea , Células COS , Niño , Preescolar , Chlorocebus aethiops , Análisis Mutacional de ADN , Femenino , Fibrinógeno/metabolismo , Predisposición Genética a la Enfermedad , Células HeLa , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Transfección , Adulto Joven
10.
Eur J Hum Genet ; 23(6): 766-73, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25182139

RESUMEN

Next-generation sequencing is currently the technology of choice for gene/mutation discovery in genetically-heterogeneous disorders, such as inherited sensorineural hearing loss (HL). Whole-exome sequencing of a single Italian proband affected by non-syndromic HL identified a novel missense variant within the PRPS1 gene (NM_002764.3:c.337G>T (p.A113S)) segregating with post-lingual, bilateral, progressive deafness in the proband's family. Defects in this gene, encoding the phosphoribosyl pyrophosphate synthetase 1 (PRS-I) enzyme, determine either X-linked syndromic conditions associated with hearing impairment (eg, Arts syndrome and Charcot-Marie-Tooth neuropathy type X-5) or non-syndromic HL (DFNX1). A subsequent screening of the entire PRPS1 gene in 16 unrelated probands from X-linked deaf families led to the discovery of two additional missense variants (c.343A>G (p.M115V) and c.925G>T (p.V309F)) segregating with hearing impairment, and associated with mildly-symptomatic peripheral neuropathy. All three variants result in a marked reduction (>60%) of the PRS-I activity in the patients' erythrocytes, with c.343A>G (p.M115V) and c.925G>T (p.V309F) affecting more severely the enzyme function. Our data significantly expand the current spectrum of pathogenic variants in PRPS1, confirming that they are associated with a continuum disease spectrum, thus stressing the importance of functional studies and detailed clinical investigations for genotype-phenotype correlation.


Asunto(s)
Ataxia/genética , Enfermedad de Charcot-Marie-Tooth/genética , Cromosomas Humanos X/genética , Trastornos Sordoceguera/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación Missense , Enfermedades del Sistema Nervioso Periférico/genética , Fenotipo , Ribosa-Fosfato Pirofosfoquinasa/genética , Adolescente , Adulto , Niño , Sordera/genética , Femenino , Ligamiento Genético , Humanos , Masculino , Linaje
11.
Hum Mol Genet ; 21(3): 577-85, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22038834

RESUMEN

The miR-96, miR-182 and miR-183 microRNA (miRNA) family is essential for differentiation and function of the vertebrate inner ear. Recently, point mutations within the seed region of miR-96 were reported in two Spanish families with autosomal dominant non-syndromic sensorineural hearing loss (NSHL) and in a mouse model of NSHL. We screened 882 NSHL patients and 836 normal-hearing Italian controls and identified one putative novel mutation within the miR-96 gene in a family with autosomal dominant NSHL. Although located outside the mature miR-96 sequence, the detected variant replaces a highly conserved nucleotide within the companion miR-96*, and is predicted to reduce the stability of the pre-miRNA hairpin. To evaluate the effect of the detected mutation on miR-96/mir-96* biogenesis, we investigated the maturation of miR-96 by transient expression in mammalian cells, followed by real-time reverse-transcription polymerase chain reaction (PCR). We found that both miR-96 and miR-96* levels were significantly reduced in the mutant, whereas the precursor levels were unaffected. Moreover, miR-96 and miR-96* expression levels could be restored by a compensatory mutation that reconstitutes the secondary structure of the pre-miR-96 hairpin, demonstrating that the mutation hinders precursor processing, probably interfering with Dicer cleavage. Finally, even though the mature miR-96 sequence is not altered, we demonstrated that the identified mutation significantly impacts on miR-96 regulation of selected targets. In conclusion, we provide further evidence of the involvement of miR-96 mutations in human deafness and demonstrate that a quantitative defect of this miRNA may contribute to NSHL.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , MicroARNs/genética , Mutación , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica , Células HeLa , Humanos , Italia , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Precursores del ARN/química , Precursores del ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA