Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(10)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37893076

RESUMEN

The expression of CD4 and CD8 co-receptors defines two distinct T cell populations with specialized functions. While CD4+ T cells support and modulate immune responses through different T-helper (Th) and regulatory subtypes, CD8+ T cells eliminate cells that might threaten the organism, for example, virus-infected or tumor cells. However, a paradoxical population of CD4+CD8+ double-positive (DP) T cells challenging this paradigm has been found in the peripheral blood. This subset has been observed in healthy as well as pathological conditions, suggesting unique and well-defined functions. Furthermore, DP T cells express activation markers and exhibit memory-like features, displaying an effector memory (EM) and central memory (CM) phenotype. A subset expressing high CD4 (CD4bright+) and intermediate CD8 (CD8dim+) levels and a population of CD8bright+CD4dim+ T cells have been identified within DP T cells, suggesting that this small subpopulation may be heterogeneous. This review summarizes the current literature on DP T cells in humans in health and diseases. In addition, we point out that strategies to better characterize this minor T cell subset's role in regulating immune responses are necessary.

2.
Cells ; 11(14)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35883569

RESUMEN

Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Modelos Animales de Enfermedad , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Infecciones/metabolismo , Inflamación/metabolismo , Ratones , Receptores de Glucocorticoides/metabolismo
3.
Cell Death Dis ; 12(12): 1151, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903710

RESUMEN

Breast cancer (BC) treatment frequently involves microtubule-targeting agents (MTAs), such as paclitaxel, that arrest cells in mitosis. Sensitivity to MTAs is defined by a subset of pro- and anti-apoptotic BCL2 family proteins controlling mitochondrial apoptosis. Here, we aimed to determine their prognostic value in primary tumour samples from 92 BC patients. Our analysis identified high NOXA/PMAIP mRNA expression levels as an independent prognostic marker for improved relapse-free survival (RFS) and overall survival (OS) in multivariate analysis in BC patients, independent of their molecular subtype. Analysis of available TCGA datasets of 1060 BC patients confirmed our results and added a clear predictive value of NOXA mRNA levels for patients who received MTA-based therapy. In this TCGA cohort, 122 patients received MTA-treatment and high NOXA mRNA levels correlated with their progression-free interval (PFI) and OS. Our follow-up analyses in a panel of BC cell lines of different molecular subtypes identified NOXA protein expression as a key determinant of paclitaxel sensitivity in triple-negative breast cancer (TNBC) cells. Moreover, we noted highest additive effects between paclitaxel and chemical inhibition of BCLX, but not BCL2 or MCL1, documenting dependence of TNBC cells on BCLX for survival and paclitaxel sensitivity defined by NOXA expression levels.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Neoplasias de la Mama Triple Negativas , Proteínas Reguladoras de la Apoptosis , Humanos , Microtúbulos/metabolismo , Recurrencia Local de Neoplasia , Paclitaxel/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Mensajero/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
4.
Dev Cell ; 52(3): 335-349.e7, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31983631

RESUMEN

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.


Asunto(s)
Caspasa 2/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Factores de Transcripción E2F/fisiología , Hepatocitos/citología , Regeneración Hepática , Poliploidía , Proteína p53 Supresora de Tumor/fisiología , Aneuploidia , Animales , Proteína Adaptadora de Señalización CRADD/fisiología , Centrosoma , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Citocinesis , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados
5.
Front Immunol ; 11: 616949, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584708

RESUMEN

The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.


Asunto(s)
Envejecimiento/inmunología , Inmunidad Celular/inmunología , Linfocitos T Reguladores/inmunología , Animales , Humanos
6.
Front Immunol ; 10: 472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936873

RESUMEN

Activation of the immune system increases systemic adrenal-derived glucocorticoid (GC) levels which downregulate the immune response as part of a negative feedback loop. While CD4+ T cells are essential target cells affected by GC, it is not known whether these hormones exert their major effects on CD4+ helper T cells, CD4+Foxp3+ regulatory T cells (Treg cells), or both. Here, we generated mice with a specific deletion of the glucocorticoid receptor (GR) in Foxp3+ Treg cells. Remarkably, while basal Treg cell characteristics and in vitro suppression capacity were unchanged, Treg cells lacking the GR did not prevent the induction of inflammatory bowel disease in an in vivo mouse model. Under inflammatory conditions, GR-deficient Treg cells acquired Th1-like characteristics and expressed IFN-gamma, but not IL-17, and failed to inhibit pro-inflammatory CD4+ T cell expansion in situ. These findings reveal that the GR is critical for Foxp3+ Treg cell function and suggest that endogenous GC prevent Treg cell plasticity toward a Th1-like Treg cell phenotype in experimental colitis. When equally active in humans, a rationale is provided to develop GC-mimicking therapeutic strategies which specifically target Foxp3+ Treg cells for the treatment of inflammatory bowel disease.


Asunto(s)
Colitis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Receptores de Glucocorticoides/fisiología , Linfocitos T Reguladores/inmunología , Traslado Adoptivo/efectos adversos , Animales , Anticuerpos Antinucleares/biosíntesis , Linfocitos T CD4-Positivos/inmunología , Supervivencia Celular , Colitis/etiología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Factores de Transcripción Forkhead/análisis , Técnicas de Silenciamiento del Gen , Glucocorticoides/fisiología , Activación de Linfocitos , Masculino , Ratones , Especificidad de Órganos , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Autotolerancia , Bazo/inmunología , Bazo/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/trasplante , Linfocitos T Reguladores/química , Timo/inmunología , Timo/patología
7.
Cell Death Dis ; 8(7): e2948, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28726773

RESUMEN

Glucocorticoids (GC) are essential regulators of T-cell development and function. Activation of the immune system increases systemic adrenal-derived GC levels which downregulate immune activity as part of a negative feedback control system. Increasing evidence shows, however, that GC can also be derived from extra-adrenal sources such as the thymus or intestine, thus providing local control of GC-mediated effects. The thymus reportedly produces GC, but whether thymic epithelial cells or thymocytes produce GC acting either in an autocrine or paracrine fashion is not clear. We studied the expression of two main enzymes involved in de novo GC synthesis, CYP11A1 and CYP11B1, as well as the expression and activity of HSD11B1, an enzyme catalyzing interconversion of inert GC metabolites with active GC. While we found no evidence of de novo GC synthesis in both thymocytes and peripheral T cells, abundant regeneration of GC from the inactive metabolite 11-dehydrocorticosterone was detectable. Irrespective of their maturation stage, T cells that produced GC in this manner undergo autonomous cell death as this was blocked when glucocorticoid receptor-deficient T cells were treated with GC metabolites. These results indicate that both immature and mature T cells possess the capacity to undergo apoptosis in response to intrinsically generated GC. Consequently, positive selection of thymocytes, as well as survival of peripheral T cells may depend on TCR-induced escape of otherwise HSD11B1-driven autonomous T-cell death.


Asunto(s)
Apoptosis , Glucocorticoides/metabolismo , Comunicación Paracrina , Linfocitos T/metabolismo , Timo/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Glucocorticoides/genética , Ratones , Ratones Noqueados , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Linfocitos T/citología , Timo/citología
8.
Neoplasia ; 16(10): 845-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25379021

RESUMEN

Selumetinib (AZD6244, ARRY-142886) is a MEK1/2 inhibitor that has gained interest as an anti-tumour agent. We have determined the degree of sensitivity/resistance to Selumetinib in a panel of colorectal cancer cell lines using cell proliferation and soft agar assays. Sensitive cell lines underwent G1 arrest, whereas Selumetinib had no effect on the cell cycle of resistant cells. Some of the resistant cell lines showed high levels of ERK1/2 phosphorylation in the absence of serum. Selumetinib inhibited phosphorylation of ERK1/2 and RSK and had no effect on AKT phosphorylation in both sensitive and resistant cells. Furthermore, mutations in KRAS, BRAF, or PIK3CA were not clearly associated with Selumetinib resistance. Surprisingly, Selumetinib was able to inhibit phosphorylation of p70 S6 kinase (p70S6K) and its downstream target ribosomal protein S6 (RPS6) in sensitive cell lines. However, p70S6K and RPS6 phosphorylation remained unaffected or even increased in resistant cells. Moreover, in some of the resistant cell lines p70S6K and RPS6 were phosphorylated in the absence of serum. Interestingly, colorectal primary cultures derived from tumours excised to patients exhibited the same behaviour than established cell lines. Pharmacological inhibition of p70S6K using the PI3K/mTOR inhibitor NVP-BEZ235, the specific mTOR inhibitor Rapamycin and the specific p70S6K inhibitor PF-4708671 potentiated Selumetinib effects in resistant cells. In addition, biological inhibition of p70S6K using siRNA rendered responsiveness to Selumetinib in resistant cell lines. Furthermore, combination of p70S6K silencing and PF-47086714 was even more effective. We can conclude that p70S6K and its downstream target RPS6 are potential biomarkers of resistance to Selumetinib in colorectal cancer.


Asunto(s)
Bencimidazoles/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína S6 Ribosómica/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Activación Enzimática/efectos de los fármacos , Humanos , Imidazoles/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras) , Quinolinas/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas ras/genética
9.
Genes Nutr ; 8(1): 43-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22923011

RESUMEN

In this work, the effect of rosemary extracts rich on polyphenols obtained using pressurized fluids was investigated on the gene expression of human SW480 and HT29 colon cancer cells. The application of transcriptomic profiling and functional enrichment analysis was done via two computational approaches, Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. These two approaches were used for functional enrichment analysis as a previous step for a reliable interpretation of the data obtained from microarray analysis. Reverse transcription quantitative-PCR was used to confirm relative changes in mRNA levels of selected genes from microarrays. The selection of genes was based on their expression change, adjusted p value, and known biological function. According to genome-wide transcriptomics analysis, rosemary polyphenols altered the expression of ~4 % of the genes covered by the Affymetrix Human Gene 1.0ST chip in both colon cancer cells. However, only ~18 % of the differentially expressed genes were common to both cell lines, indicating markedly different expression profiles in response to the treatment. Differences in induction of G2/M arrest observed by rosemary polyphenols in the two colon adenocarcinoma cell lines suggest that the extract may be differentially effective against tumors with specific mutational pattern. From our results, it is also concluded that rosemary polyphenols induced a low degree of apoptosis indicating that other multiple signaling pathways may contribute to colon cancer cell death.

10.
Electrophoresis ; 33(15): 2314-27, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22887152

RESUMEN

In this work, a global Foodomics strategy has been applied to study the antiproliferative effect of dietary polyphenols from rosemary on two human leukemia lines, one showing a drug-sensitive phenotype (K562), and another exhibiting a drug-resistant phenotype (K562/R). To this aim, whole-transcriptome microarray together with an MS-based nontargeted analytical approach (via CE-TOF MS and UPLC-TOF MS) have been employed to carry out transcriptomics and metabolomics analyses, respectively. Functional enrichment analysis was done using ingenuity pathway analysis (IPA) software as a previous step for a reliable interpretation of transcriptomic and metabolomic profiles. Rosemary polyphenols altered the expression of approximately 1% of the genes covered by the whole transcriptome microarray in both leukemia cell lines. Overall, differences in the transcriptional induction of a number of genes encoding phase II detoxifying and antioxidant genes, as well as differences in the metabolic profiles observed in the two leukemia cell lines suggest that rosemary polyphenols may exert a differential chemopreventive effect in leukemia cells with different phenotypes. IPA predictions on transcription factor analysis highlighted inhibition of Myc transcription factor function by rosemary polyphenols, which may explain the observed antiproliferative effect of rosemary extract in the leukemia cells. Metabolomics analysis suggested that rosemary polyphenols affected differently the intracellular levels of some metabolites in two leukemia cell sublines. Integration of data obtained from transcriptomics and metabolomics platforms was attempted by overlaying datasets on canonical (defined) metabolic pathways using IPA software. This strategy enabled the identification of several differentially expressed genes in the metabolic pathways modulated by rosemary polyphenols providing more evidences on the effect of these compounds.


Asunto(s)
Metaboloma/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Rosmarinus/química , Transcriptoma/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Electroforesis Capilar , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células K562 , Metabolómica , Reacción en Cadena de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
J Chromatogr A ; 1248: 139-53, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22727325

RESUMEN

A global methodology, called Foodomics, which allows carrying out a comprehensive evaluation of the health benefits of food ingredients is presented in this work. The new methodology is based on the combination of several analytical platforms and data processing for Transcriptomics, Proteomics and Metabolomics studies, allowing the determination of changes induced by food ingredients at molecular level. Both, the whole methodological development and its potential are presented through the investigation of a case study following a hypothesis-free strategy. Namely, the chemopreventive effect of polyphenols from rosemary was examined on the total gene, protein and metabolite expression in human HT29 colon cancer cells. Conclusions on the bioactivity of polyphenols against colon cancer cells based on the results from each single platform (Transcriptomics, Proteomics or Metabolomics) are compared with the conclusions based on the integration of the whole results from the three platforms, corroborating the interest of using a global integrative strategy as Foodomics. To our knowledge, although many papers and reviews have been published on this topic, this is the first time that Transcriptomics, Proteomics and Metabolomics platforms are put together to study the health benefits from dietary ingredients against colon cancer cells at gene, protein and metabolite level. Advantages, drawbacks and current challenges of this global analytical strategy are discussed in this work. The results from our study provide new insights on the biological mechanisms involved in the cancer risk reduction properties of dietary constituents.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias del Colon/prevención & control , Suplementos Dietéticos , Metabolómica/métodos , Polifenoles/uso terapéutico , Proteómica/métodos , Rosmarinus/química , Transcriptoma/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Fitoterapia , Polifenoles/farmacología , Proteoma/efectos de los fármacos
12.
ChemMedChem ; 7(2): 301-10, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22170592

RESUMEN

A group of organotin(IV) complexes were prepared: [SnCy3 (DMNI)] (1), [SnCy3 (BZDO)] (2), [SnCy3 (DMFU)] (3), and [SnPh2 (BZDO)2 ] (4), for which DMNIH=2,6-dimethoxynicotinic acid, BZDOH=1,4-benzodioxane-6-carboxylic acid, and DMFUH=2,5-dimethyl-3-furoic acid. The cytotoxic activities of compounds 1-4 were tested against pancreatic carcinoma (PANC-1), erythroleukemia (K562), and two glioblastoma multiform (U87 and LN-229) human cell lines; they show very high antiproliferative activity, with IC50 values in the 150-700 nM range after incubation for 72 h. Distribution of cellular DNA upon treatment with 1-4 revealed that whereas compounds 1-3 induce apoptosis in most of the cell lines, compound 4 does not affect cell viability in any cell line tested, indicating a possible difference in cytotoxic mechanism. Studies with the daunomycin-resistant K562/R cell line expressing P-glycoprotein (Pgp) showed that compounds 1-4 are not substrates of this protein efflux pump, indicating that these compounds do not induce acquisition of multidrug resistance, which is associated with the overexpression of Pgp.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ácidos Carboxílicos/química , Complejos de Coordinación/química , Estaño/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Resistencia a Antineoplásicos/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Conformación Molecular
13.
Exp Cell Res ; 317(10): 1476-89, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21439954

RESUMEN

Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G(1) arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G(1) arrest. This G(1) arrest was associated with up-regulation of p27(kip1), whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G(1) arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-3/metabolismo , Western Blotting , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Receptores ErbB/genética , Citometría de Flujo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Inmunoprecipitación , Quinazolinas , ARN Mensajero/genética , Receptor ErbB-3/genética , Receptor ErbB-4 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Células Tumorales Cultivadas , Tirfostinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA