Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 151, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783390

RESUMEN

BACKGROUND: Mesenchymal stem cell-neural progenitors (MSC-NPs) are a bone marrow mesenchymal stem cell (MSC)-derived ex vivo manipulated cell product with therapeutic potential in multiple sclerosis (MS). The objective of this study was to determine efficacy of intrathecal (IT) MSC-NP treatment in patients with progressive MS. METHODS: The study is a phase II randomized, double-blind, placebo-controlled clinical trial with a compassionate crossover design conducted at a single site. Subjects were stratified according to baseline Expanded Disability Status Scale (EDSS) (3.0-6.5) and disease subtype (secondary or primary progressive MS) and randomized into either treatment or placebo group to receive six IT injections of autologous MSC-NPs or saline every two months. The primary outcome was EDSS Plus, defined by improvement in EDSS, timed 25-foot walk (T25FW) or nine-hole peg test. Secondary outcomes included the individual components of EDSS Plus, the six-minute walk test (6MWT), urodynamics testing, and brain atrophy measurement. RESULTS: Subjects were randomized into MSC-NP (n = 27) or saline (n = 27) groups. There was no difference in EDSS Plus improvement between the MSC-NP (33%) and saline (37%) groups. Exploratory subgroup analysis demonstrated that in subjects who require assistance for ambulation (EDSS 6.0-6.5) there was a significantly higher percentage of improvement in T25FW and 6MWT in the MSC-NP group (3.7% ± 23.1% and - 9.2% ± 18.2%) compared to the saline group (-54.4% ± 70.5% and - 32.1% ± 30.0%), (p = 0.030 and p = 0.036, respectively). IT-MSC-NP treatment was also associated with improved bladder function and reduced rate of grey matter atrophy on brain MRI. Biomarker analysis demonstrated increased MMP9 and decreased CCL2 levels in the cerebrospinal fluid following treatment. CONCLUSION: Results from exploratory outcomes suggest that IT-MSC-NP treatment may be associated with a therapeutic response in a subgroup of MS patients. TRIAL REGISTRATION: ClinicalTrials.gov NCT03355365, registered November 14, 2017, https://clinicaltrials.gov/study/NCT03355365?term=NCT03355365&rank=1 .


Asunto(s)
Inyecciones Espinales , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Masculino , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Persona de Mediana Edad , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adulto , Método Doble Ciego , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Esclerosis Múltiple Crónica Progresiva/terapia , Esclerosis Múltiple Crónica Progresiva/patología , Resultado del Tratamiento
2.
Front Immunol ; 14: 1194671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449202

RESUMEN

Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Humanos , Estudios Prospectivos , Interleucina-2 , Esclerosis Múltiple/tratamiento farmacológico , SARS-CoV-2 , Anticuerpos
3.
Plants (Basel) ; 12(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37299179

RESUMEN

Solanum section Leptostemonum is an ideal lineage to test the theoretical framework regarding proposed evolutionary benefits of outcrossing sexual systems in comparison to cosexuality. Theoretically, non-cosexual taxa should support more genetic diversity within populations, experience less inbreeding, and have less genetic structure due to a restricted ability to self-fertilize. However, many confounding factors present challenges for a confident inference that inherent differences in sexual systems influence observed genetic patterns among populations. This study provides a foundational baseline of the population genetics of several species of different sexual systems with the aim of generating hypotheses of any factor-including sexual system-that influences genetic patterns. Importantly, results indicate that dioecious S. asymmetriphyllum maintains less genetic structure and greater admixture among populations than cosexual S. raphiotes at the same three locations where they co-occur. This suggests that when certain conditions are met, the evolution of dioecy may have proceeded as a means to avoid genetic consequences of self-compatibility and may support hypotheses of benefits gained through differential resource allocation partitioned across sexes. Arguably, the most significant finding of this study is that all taxa are strongly inbred, possibly reflective of a shared response to recent climate shifts, such as the increased frequency and intensity of the region's fire regime.

4.
Front Immunol ; 13: 926318, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990701

RESUMEN

Immunocompromised individuals, including multiple sclerosis (MS) patients on certain immunotherapy treatments, are considered susceptible to complications from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and specific vaccination regimens have been recommended for suitable protection. MS patients receiving anti-CD20 therapy (aCD20-MS) are considered especially vulnerable due to acquired B-cell depletion and impaired antibody production in response to virus infection and COVID-19 vaccination. Here, the humoral and cellular responses are analyzed in a group of aCD20-MS patients (n=43) compared to a healthy control cohort (n=34) during the first 6 months after a 2-dose cycle mRNA-based COVID-19 vaccination. Both IgG antibodies recognizing receptor binding domain (RBD) from CoV-2 spike protein and their blocking activity against RBD-hACE2 binding were significantly reduced in aCD20-MS patients, with a seroconversion rate of only 23.8%. Interestingly, even under conditions of severe B-cell depletion and failed seroconversion, a significantly higher polyfunctional IFNγ+ and IL-2+ T-cell response and strong T-cell proliferation capacity were detected compared to controls. Moreover, no difference in T-cell response was observed between forms of disease (relapsing remitting- vs progressive-MS), anti-CD20 therapy (Rituximab vs Ocrelizumab) and type of mRNA-based vaccine received (mRNA-1273 vs BNT162b2). These results suggest the generation of a partial adaptive immune response to COVID-19 vaccination in B-cell depleted MS individuals driven by a functionally competent T-cell arm. Investigation into the role of the cellular immune response is important to identifying the level of protection against SARS-CoV-2 in aCD20-MS patients and could have potential implications for future vaccine design and application.


Asunto(s)
COVID-19 , Esclerosis Múltiple , Vacunas Virales , Antígenos CD20 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Esclerosis Múltiple/tratamiento farmacológico , ARN Mensajero , SARS-CoV-2 , Linfocitos T , Vacunación
5.
Ecol Lett ; 24(6): 1145-1156, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33759325

RESUMEN

Despite widespread evidence that biological invasion influences both the biotic and abiotic soil environments, the extent to which these two pathways underpin the effects of invasion on plant traits and performance remains unknown. Leveraging a long-term (14-year) field experiment, we show that an allelochemical-producing invader affects plants through biotic mechanisms, altering the soil fungal community composition, with no apparent shifts in soil nutrient availability. Changes in belowground fungal communities resulted in high costs of nutrient uptake for native perennials and a shift in plant traits linked to their water and nutrient use efficiencies. Some plants in the invaded community compensate for the disruption of nutritional symbionts and reduced nutrient provisioning by sanctioning more nitrogen to photosynthesis and expending more water, which demonstrates a trade-off in trait investment. For the first time, we show that the disruption of belowground nutritional symbionts can drive plants towards alternative regions of their trait space in order to maintain water and nutrient economics.


Asunto(s)
Nitrógeno , Microbiología del Suelo , Hongos , Plantas , Suelo , Agua
6.
Ecology ; 102(1): e03201, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970846

RESUMEN

The mechanisms causing invasive species impact are rarely empirically tested, limiting our ability to understand and predict subsequent changes in invaded plant communities. Invader disruption of native mutualistic interactions is a mechanism expected to have negative effects on native plant species. Specifically, disruption of native plant-fungal mutualisms may provide non-mycorrhizal plant invaders an advantage over mycorrhizal native plants. Invasive Alliaria petiolata (garlic mustard) produces secondary chemicals toxic to soil microorganisms including mycorrhizal fungi, and is known to induce physiological stress and reduce population growth rates of native forest understory plant species. Here, we report on a 11-yr manipulative field experiment in replicated forest plots testing if the effects of removal of garlic mustard on the plant community support the mutualism disruption hypothesis within the entire understory herbaceous community. We compare community responses for two functional groups: the mycorrhizal vs. the non-mycorrhizal plant communities. Our results show that garlic mustard weeding alters the community composition, decreases community evenness, and increases the abundance of understory herbs that associate with mycorrhizal fungi. Conversely, garlic mustard has no significant effects on the non-mycorrhizal plant community. Consistent with the mutualism disruption hypothesis, our results demonstrate that allelochemical producing invaders modify the plant community by disproportionately impacting mycorrhizal plant species. We also demonstrate the importance of incorporating causal mechanisms of biological invasion to elucidate patterns and predict community-level responses.


Asunto(s)
Alelopatía , Brassicaceae/química , Micorrizas , Especies Introducidas , Suelo , Microbiología del Suelo , Simbiosis
7.
Am J Bot ; 106(9): 1271-1278, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31442320

RESUMEN

PREMISE: Declines in reproductive capabilities with increasing age are common across the tree of life. However, in plants, mating system traits have rarely been tested for signs of senescence. Since reproduction is often resource limited, we might expect outcrossing and selfing taxa to allocate these resources differently, especially as a plant ages. Compared with selfers, outcrossers are expected to produce showy, rewarding flowers that attract pollinators and high-quality pollen that can successfully compete for ovules. Yet, this resource-intensive strategy of outcrossers may result in declines in floral allocation and pollen performance metrics, relative to selfers. METHODS: To explore age-related changes in reproduction, we measured flower size and pollen germinability over the flowering period for multiple populations of an annual sister species pair, Collinsia linearis (outcrosser) and C. rattanii (selfer), in a growth chamber experiment. RESULTS: We found that flower size decreased significantly with age in both species. The outcrosser expressed a significant and dramatic (88%) decline in pollen germinability with age, while the selfer's pollen germinability decline was non-significant and low (17%). CONCLUSIONS: Our results support the idea that the higher total cost of reproduction in outcrossers can deplete available resources more rapidly than in selfers, manifesting as a decline in male performance with plant age.


Asunto(s)
Flores , Polen , Masculino , Óvulo Vegetal , Fenotipo , Polinización , Reproducción
8.
PLoS One ; 14(4): e0207564, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30998778

RESUMEN

The dioecious and andromonoecious Solanum taxa (the "S. dioicum group") of the Australian Monsoon Tropics have been the subject of phylogenetic and taxonomic study for decades, yet much of their basic biology is still unknown. This is especially true for plant-animal interactions, including the influence of fruit form and calyx morphology on seed dispersal. We combine field/greenhouse observations and specimen-based study with phylogenetic analysis of seven nuclear regions obtained via a microfluidic PCR-based enrichment strategy and high-throughput sequencing, and present the first species-tree hypothesis for the S. dioicum group. Our results suggest that epizoochorous trample burr seed dispersal (strongly linked to calyx accrescence) is far more common among Australian Solanum than previously thought and support the hypothesis that the combination of large fleshy fruits and endozoochorous dispersal represents a reversal in this study group. The general lack of direct evidence related to biotic dispersal (epizoochorous or endozoochorous) may be a function of declines and/or extinctions of vertebrate dispersers. Because of this, some taxa might now rely on secondary dispersal mechanisms (e.g. shakers, tumbleweeds, rafting) as a means to maintain current populations and establish new ones.


Asunto(s)
Frutas/genética , Genes de Plantas , Filogenia , Dispersión de Semillas/genética , Solanum/genética , Australia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...