Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 956926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936735

RESUMEN

The tumor microenvironment facilitates cancer progression and therapeutic resistance. Tumor collagens and their architecture play an essential role in this process. However, little is known about the mechanisms by which tumor cells sense and respond to this extracellular matrix environment. Recently, the Discoidin Domain Receptor 1 (DDR1), a collagen receptor and tyrosine kinase has emerged as an important player in this malignant process, although the underlying signaling mechanisms remain unclear. Here, we review new DDR1 functions in tumor dormancy following dissemination, immune exclusion and therapeutic resistance induced by stromal collagens deposition. We also discuss the signaling mechanisms behind these tumor activities and the therapeutic strategies aiming at targeting these collagens-dependent tumor responses.

2.
Cancers (Basel) ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35740644

RESUMEN

The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high PRAG1 expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients. Functionally, PEAK2 depletion reduced CRC cell growth and invasion in vitro, while its overexpression increased these transforming effects. PEAK2 depletion also reduced CRC development in nude mice. Mechanistically, PEAK2 expression induced cellular protein tyrosine phosphorylation, despite its catalytic inactivity. Phosphoproteomic analysis identified regulators of cell adhesion and F-actin dynamics as PEAK2 targets. Additionally, PEAK2 was identified as a novel ABL TK activator. In line with this, PEAK2 expression localized at focal adhesions of CRC cells and induced ABL-dependent formation of actin-rich plasma membrane protrusions filopodia that function to drive cell invasion. Interestingly, all these PEAK2 transforming activities were regulated by its main phosphorylation site, Tyr413, which implicates the SRC oncogene. Thus, our results uncover a protumoural function of PEAK2 in CRC and suggest that its deregulation affects adhesive properties of CRC cells to enable cancer progression.

4.
Oncogene ; 41(7): 960-970, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999732

RESUMEN

The membrane-anchored Src tyrosine kinase is involved in numerous pathways and its deregulation is involved in human cancer. Our knowledge on Src regulation relies on crystallography, which revealed intramolecular interactions to control active Src conformations. However, Src contains a N-terminal intrinsically disordered unique domain (UD) whose function remains unclear. Using NMR, we reported that UD forms an intramolecular fuzzy complex involving a conserved region with lipid-binding capacity named Unique Lipid-Binding Region (ULBR), which could modulate Src membrane anchoring. Here we show that the ULBR is essential for Src's oncogenic capacity. ULBR inactive mutations inhibited Src transforming activity in NIH3T3 cells and in human colon cancer cells. It also reduced Src-induced tumor development in nude mice. An intact ULBR was required for MAPK signaling without affecting Src kinase activity nor sub-cellular localization. Phospho-proteomic analyses revealed that, while not impacting on the global tyrosine phospho-proteome in colon cancer cells, this region modulates phosphorylation of specific membrane-localized tyrosine kinases needed for Src oncogenic signaling, including EPHA2 and Fyn. Collectively, this study reveals an important role of this intrinsically disordered region in malignant cell transformation and suggests a novel layer of Src regulation by this unique region via membrane substrate phosphorylation.


Asunto(s)
Proteómica
5.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34944965

RESUMEN

The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.

6.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717909

RESUMEN

Src, originally identified as an oncogene, is a membrane-anchored tyrosine kinase and the Src family kinase (SFK) prototype. SFKs regulate the signalling induced by a wide range of cell surface receptors leading to epithelial cell growth and adhesion. In the intestine, the SFK members Src, Fyn and Yes regulate epithelial cell proliferation and migration during tissue regeneration and transformation, thus implicating conserved and specific functions. In patients with colon cancer, SFK activity is a marker of poor clinical prognosis and a potent driver of metastasis formation. These tumorigenic activities are linked to SFK capacity to promote the dissemination and tumour-initiating capacities of epithelial tumour cells. However, it is unclear how SFKs promote colon tumour formation and metastatic progression because SFK-encoding genes are unfrequently mutated in human cancer. Here, we review recent findings on SFK signalling during intestinal homeostasis, regeneration and tumorigenesis. We also describe the key nongenetic mechanisms underlying SFK tumour activities in colorectal cancer, and discuss how these mechanisms could be exploited in therapeutic strategies to target SFK signalling in metastatic colon cancer.

7.
Front Oncol ; 10: 125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117772

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of tumor-related death worldwide. While surgery can cure patients with early stage CRC, the 5-year survival rate is only 10% for patients with metastatic disease. Therefore, new anti-metastatic therapies are needed for this cancer. Metastatic spread defines the dissemination of cancer cells with tumor-initiating capacities from the primary tumor and their colonization of distinct organs, mainly the liver, for secondary tumor formation. Although the underlying mechanisms are not fully understood, components of the tumor microenvironment have gained strong interest. Among the known metastatic-promoting factors, collagens are extracellular matrix components that are deposited within the tumor, the tumor microenvironment, and at metastatic site(s), and are recognized to play essential roles during metastasis development. Here, we review recent findings on the metastatic role of the collagen receptors Discoidin Domain Receptors 1 and 2 (DDR1 and DDR2) in CRC and discuss the therapeutic value of targeting these receptor tyrosine kinases in this cancer.

8.
Am J Physiol Cell Physiol ; 317(5): C869-C880, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31291143

RESUMEN

Metastases remain a major cause of cancer morbidity and mortality. This is a multistep process that involves aberrant cell communication, leading to tumor cell dissemination from the primary tumor and colonization of distinct organs for secondary tumor formation. The mechanisms promoting this pathological process are not fully understood, although they may be of obvious therapeutic interest. Exosomes are small cell-secreted vesicles that contain a large variety of proteins, lipids, and nucleic acids with important signaling activities, and that represent an evolutionarily conserved mechanism for cell-to-cell communication. Not surprisingly, exosome activities have gained strong interest in cancer biology and might play essential roles in metastasis development. Here, we will describe recent findings on the role of exosomes in cancer metastasis formation, particularly in colorectal cancer (CRC). We will also discuss the potential therapeutic value of these vesicles in metastatic cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Microambiente Tumoral/fisiología , Animales , Biomarcadores de Tumor/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Exosomas/patología , Humanos , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control
9.
Cancers (Basel) ; 11(5)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091767

RESUMEN

Tyrosine kinases (TKs) phosphorylate proteins on tyrosine residues as an intracellular signalling mechanism to coordinate intestinal epithelial cell communication and fate decision. Deregulation of their activity is ultimately connected with carcinogenesis. In colorectal cancer (CRC), it is still unclear how aberrant TK activities contribute to tumour formation because TK-encoding genes are not frequently mutated in this cancer. In vertebrates, several TKs are under the control of small adaptor proteins with potential important physiopathological roles. For instance, they can exert tumour suppressor functions in human cancer by targeting several components of the oncogenic TK signalling cascades. Here, we review how the Src-like adaptor protein (SLAP) and the suppressor of cytokine signalling (SOCS) adaptor proteins regulate the SRC and the Janus kinase (JAK) oncogenic pathways, respectively, and how their loss of function in the intestinal epithelium may influence tumour formation. We also discuss the potential therapeutic value of these adaptors in CRC.

10.
Am J Cancer Res ; 9(2): 449-454, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906642

RESUMEN

The human kinome comprises more than 50 pseudo-kinases with unclear biological function due to the absence of apparent catalytic activity, and therefore, with presumably little interest for cancer drug discovery. However, it is now acknowledged that several of them, such as Pragmin family members, play roles as important as those of active kinases in human cancer. How these pseudo-kinases promote tumor formation is largely unknown. Recently, independent structural analyses of three Pragmin pseudo-kinases (Pragmin, SGK223, and SGK269/PEAK1) revealed a split helical dimerization (SHED)-based mechanism of action. Additional sequence-structure analysis identified C19orf35 as a new member of the Pragmin family. Based on the results of these molecular studies, we present a unified model on how Pragmin pseudo-kinases may regulate oncogenic signaling, and suggest potential therapeutic strategies to block their tumor activity.

12.
Mol Cell Oncol ; 5(4): e1465882, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30250919

RESUMEN

The clinical management of metastatic colorectal cancer (mCRC) is still a major challenge. Recently, we discovered that nilotinib, an approved treatment for chronic myeloid leukaemia, inhibits invasive and metastatic properties of CRC cells by targeting the kinase activity of receptor for collagens DDR1 (Discoïdin Domain Receptor tyrosine kinase 1), suggesting that nilotinib could be an effective strategy to treat mCRC.

13.
Structure ; 26(4): 545-554.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29503074

RESUMEN

The pseudo-kinase and signaling protein Pragmin has been linked to cancer by regulating protein tyrosine phosphorylation via unknown mechanisms. Here we present the crystal structure of the Pragmin 906-1,368 amino acid C terminus, which encompasses its kinase domain. We show that Pragmin contains a classical protein-kinase fold devoid of catalytic activity, despite a conserved catalytic lysine (K997). By proteomics, we discovered that this pseudo-kinase uses the tyrosine kinase CSK to induce protein tyrosine phosphorylation in human cells. Interestingly, the protein-kinase domain is flanked by N- and C-terminal extensions forming an original dimerization domain that regulates Pragmin self-association and stimulates CSK activity. A1329E mutation in the C-terminal extension destabilizes Pragmin dimerization and reduces CSK activation. These results reveal a dimerization mechanism by which a pseudo-kinase can induce protein tyrosine phosphorylation. Further sequence-structure analysis identified an additional member (C19orf35) of the superfamily of dimeric Pragmin/SgK269/PEAK1 pseudo-kinases.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Portadoras/química , Tirosina/química , Familia-src Quinasas/química , Secuencias de Aminoácidos , Sitios de Unión , Proteína Tirosina Quinasa CSK , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tirosina/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
14.
EMBO Mol Med ; 10(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29438985

RESUMEN

The clinical management of metastatic colorectal cancer (mCRC) faces major challenges. Here, we show that nilotinib, a clinically approved drug for chronic myeloid leukaemia, strongly inhibits human CRC cell invasion in vitro and reduces their metastatic potential in intrasplenic tumour mouse models. Nilotinib acts by inhibiting the kinase activity of DDR1, a receptor tyrosine kinase for collagens, which we identified as a RAS-independent inducer of CRC metastasis. Using quantitative phosphoproteomics, we identified BCR as a new DDR1 substrate and demonstrated that nilotinib prevents DDR1-mediated BCR phosphorylation on Tyr177, which is important for maintaining ß-catenin transcriptional activity necessary for tumour cell invasion. DDR1 kinase inhibition also reduced the invasion of patient-derived metastatic and circulating CRC cell lines. Collectively, our results indicate that the targeting DDR1 kinase activity with nilotinib may be beneficial for patients with mCRC.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptor con Dominio Discoidina 1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcr/metabolismo , Receptores de Colágeno/metabolismo , Animales , Receptor con Dominio Discoidina 1/genética , Células HCT116 , Células HEK293 , Humanos , Ratones , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas c-bcr/genética , Pirimidinas/farmacología , Receptores de Colágeno/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
Proc Natl Acad Sci U S A ; 114(47): 12495-12500, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109268

RESUMEN

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.


Asunto(s)
Comunicación Celular/genética , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteína Oncogénica pp60(v-src)/genética , Sinteninas/genética , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Secuencias de Aminoácidos , Movimiento Celular , Proliferación Celular , Medios de Cultivo Condicionados/farmacología , Endocitosis , Endosomas/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Proteína Oncogénica pp60(v-src)/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Fosforilación , Transducción de Señal , Sindecanos/genética , Sindecanos/metabolismo , Sinteninas/metabolismo
16.
Structure ; 25(4): 630-640.e4, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28319009

RESUMEN

The N-terminal regulatory region of c-Src including the SH4, Unique, and SH3 domains adopts a compact, yet highly dynamic, structure that can be described as an intramolecular fuzzy complex. Most of the long-range interactions within the Unique domain are also observed in constructs lacking the structured SH3, indicating a considerable degree of preorganization of the disordered Unique domain. Here we report that members of the Src family of kinases (SFK) share well-conserved sequence features involving aromatic residues in their Unique domains. This observation contrasts with the supposed lack of sequence homology implied by the name of these domains and suggests that the other members of SFK also have a regulatory region involving their Unique domains. We argue that the Unique domain of each SFK is sensitive to specific input signals, encoded by each specific sequence, but the entire family shares a common mechanism for connecting the disordered and structured domains.


Asunto(s)
Familia-src Quinasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Lógica Difusa , Modelos Moleculares , Unión Proteica , Conformación Proteica
17.
Mol Cell Oncol ; 3(4): e1182241, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27652326

RESUMEN

ERBB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2) amplification is associated with invasive breast cancer. We discovered that TOM1L1 (target of myb1-like 1) and ERBB2 co-amplification defines a novel mechanism involved in breast cancer metastatic progression. Upregulation of the vesicular trafficking protein TOM1L1 enhances plasma membrane delivery of membrane-type 1 matrix metalloprotease (MT1-MMP) for efficient extracellular matrix degradation and tumor cell dissemination.

18.
Nat Commun ; 7: 10765, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26899482

RESUMEN

ERBB2 overexpression in human breast cancer leads to invasive carcinoma but the mechanism is not clearly understood. Here we report that TOM1L1 is co-amplified with ERBB2 and defines a subgroup of HER2(+)/ER(+) tumours with early metastatic relapse. TOM1L1 encodes a GAT domain-containing trafficking protein and is a SRC substrate that negatively regulates tyrosine kinase signalling. We demonstrate that TOM1L1 upregulation enhances the invasiveness of ERBB2-transformed cells. This pro-tumoural function does not involve SRC, but implicates membrane-bound membrane-type 1 MMP (MT1-MMP)-dependent activation of invadopodia, membrane protrusions specialized in extracellular matrix degradation. Mechanistically, ERBB2 elicits the indirect phosphorylation of TOM1L1 on Ser321. The phosphorylation event promotes GAT-dependent association of TOM1L1 with the sorting protein TOLLIP and trafficking of the metalloprotease MT1-MMP from endocytic compartments to invadopodia for tumour cell invasion. Collectively, these results show that TOM1L1 is an important element of an ERBB2-driven proteolytic invasive programme and that TOM1L1 amplification potentially enhances the metastatic progression of ERBB2-positive breast cancers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Receptor ErbB-2/metabolismo , Células 3T3 , Animales , Línea Celular Tumoral , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Invasividad Neoplásica
19.
Oncotarget ; 7(10): 11033-55, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26788993

RESUMEN

Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/patología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Transformación Celular Neoplásica/patología , Humanos , Neoplasias/metabolismo
20.
Am J Cancer Res ; 5(6): 1972-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26269757

RESUMEN

Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA