Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cancer Ther ; 21(12): 1835-1845, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36129807

RESUMEN

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Femenino , Animales , Humanos , Ratones , Anticuerpos de Dominio Único/química , Actinio/química , Distribución Tisular , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico
2.
Mol Cancer Ther ; 21(1): 159-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667109

RESUMEN

To this day, multiple myeloma remains an incurable cancer. For many patients, recurrence is unavoidably a result of lacking treatment options in the minimal residual disease stage. This is due to residual and treatment-resistant myeloma cells that can cause disease relapse. However, patient-specific membrane-expressed paraproteins could hold the key to target these residual cells responsible for disease recurrence. Here, we describe the therapeutic potential of radiolabeled, anti-idiotypic camelid single-domain antibody fragments (sdAbs) as tumor-restrictive vehicles against a membrane-bound paraprotein in the syngeneic mouse 5T33 myeloma model and analogously assess the feasibility of sdAb-based personalized medicine for patients with multiple myeloma. Llamas were immunized using extracts containing paraprotein from either murine or human sera, and selective sdAbs were retrieved using competitive phage display selections of immune libraries. An anti-5T33 idiotype sdAb was selected for targeted radionuclide therapy with the ß--particle emitter 177Lu and the α-particle emitter 225Ac. sdAb-based radionuclide therapy in syngeneic mice with a low 5T33 myeloma lesion load significantly delayed tumor progression. In five of seven patients with newly diagnosed myeloma, membrane expression of the paraprotein was confirmed. Starting from serum-isolated paraprotein, for two of three selected patients anti-idiotype sdAbs were successfully generated.


Asunto(s)
Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/radioterapia , Medicina de Precisión/métodos , Radioisótopos/uso terapéutico , Anticuerpos de Dominio Único/uso terapéutico , Animales , Femenino , Humanos , Ratones , Radioisótopos/farmacología , Anticuerpos de Dominio Único/farmacología
3.
Appl Radiat Isot ; 172: 109655, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33657491

RESUMEN

The application of diagnostic and therapeutic radionuclides in nuclear medicine has grown significantly and has translated into the increased interest in radionuclide generators and their development. 224Ra and its shorter-lived daughters, 212Pb and 212Bi, are very interesting radionuclides from Targeted Alpha Therapy point of view for treatment of small cancers or metastatic forms. The purpose of the present work was to develop a simple generator for rapid elution of carrier-free 224Ra from 232U or 228Th sources by radiochemical separation based on extraction chromatography with the utilization of a home-made material. The bis(2-ethylhexyl) hydrogen phosphate (HDEHP) extractant was immobilized on polytetrafluroethylene (PTFE) grains and its ability to selectively adsorb 232U and 228Th, with simultaneous high elution recovery of 224Ra, was checked over few years. The 224Ra was quantitatively eluted with small volume (3-5 mL) of 0.1 M HNO3 with low breakthrough (<0.005%) and was used for further milking of 212Bi and 212Pb from DOWEX 50WX12 by 0.75 M and 2.0 M HCl, respectively. The elaborated here methods allowed high recovery of 224Ra, 212Pb and 212Bi radionuclides and their application in radiolabeling of various biomolecules.


Asunto(s)
Bismuto/aislamiento & purificación , Radioisótopos de Plomo/aislamiento & purificación , Radioisótopos/aislamiento & purificación , Radio (Elemento)/aislamiento & purificación , Torio/aislamiento & purificación , Cromatografía/métodos , Radioisótopos/química
4.
Nanomaterials (Basel) ; 10(10)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092037

RESUMEN

Barium ferrite nanoparticles (BaFeNPs) were investigated as vehicles for 223Ra radionuclide in targeted α-therapy. BaFe nanoparticles were labeled using a hydrothermal Ba2+ cations replacement by 223Ra with yield reaching 61.3 ± 1.8%. Radiolabeled nanoparticles were functionalized with 3-phosphonopropionic acid (CEPA) linker followed by covalent conjugation to trastuzumab (Herceptin®). Thermogravimetric analysis and radiometric method with the use of [131I]-labeled trastuzumab revealed that on average 19-21 molecules of trastuzumab are attached to the surface of one BaFe-CEPA nanoparticle. The hydrodynamic diameter of BaFe-CEPA-trastuzumab conjugate is 99.9 ± 3.0 nm in water and increases to 218.3 ± 3.7 nm in PBS buffer, and the zeta potential varies from +27.2 ± 0.7 mV in water to -8.8 ± 0.7 in PBS buffer. The [223Ra]BaFe-CEPA-trastuzumab radiobioconjugate almost quantitatively retained 223Ra (>98%) and about 96% of 211Bi and 94% of 211Pb over 30 days. The obtained radiobioconjugate exhibited high affinity, cell internalization and cytotoxicity towards the human ovarian adenocarcinoma SKOV-3 cells overexpressing HER2 receptor. Confocal studies indicated that [223Ra]BaFe-CEPA-trastuzumab was located in peri-nuclear space. High cytotoxicity of the [223Ra]BaFe-CEPA-trastuzumab bioconjugate was confirmed by radiotoxicity studies on SKOV-3 cell monolayers and 3D-spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...