Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38842573

RESUMEN

Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Complejos de Clasificación Endosomal Requeridos para el Transporte , Vesículas Extracelulares , Neuronas Motoras , Transducción de Señal , Sinapsis , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Vesículas Extracelulares/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Sinapsis/metabolismo , Neuronas Motoras/metabolismo , Autofagia , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Neuroglía/metabolismo
2.
SIAM J Appl Math ; 84(3): S476-S492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912397

RESUMEN

The transport of particles in cells is influenced by the properties of intracellular networks they traverse while searching for localized target regions or reaction partners. Moreover, given the rapid turnover in many intracellular structures, it is crucial to understand how temporal changes in the network structure affect diffusive transport. In this work, we use network theory to characterize complex intracellular biological environments across scales. We develop an efficient computational method to compute the mean first passage times for simulating a particle diffusing along two-dimensional planar networks extracted from fluorescence microscopy imaging. We first benchmark this methodology in the context of synthetic networks, and subsequently apply it to live-cell data from endoplasmic reticulum tubular networks.

3.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746182

RESUMEN

Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.

5.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014140

RESUMEN

Neuromuscular junctions (NMJs) are evolutionarily ancient, specialized contacts between neurons and muscles. Axons and NMJs must endure mechanical strain through a lifetime of muscle contraction, making them vulnerable to aging and neurodegenerative conditions. However, cellular strategies for mitigating this mechanical stress remain unknown. In this study, we used Drosophila larval NMJs to investigate the role of actin and myosin (actomyosin)-mediated contractility in generating and responding to cellular forces at the neuron-muscle interface. We identified a new long-lived, low-turnover presynaptic actin core traversing the NMJ, which partly co-localizes with non-muscle myosin II (NMII). Neuronal RNAi of NMII induced disorganization of this core, suggesting that this structure might have contractile properties. Interestingly, neuronal RNAi of NMII also decreased NMII levels in the postsynaptic muscle proximal to neurons, suggesting that neuronal actomyosin rearrangements propagate their effects transsynaptically. We also observed reduced Integrin levels upon NMII knockdown, indicating that neuronal actomyosin disruption triggers rearrangements of Integrin-mediated connections between neurons and surrounding muscle tissue. In summary, our study identifies a previously uncharacterized presynaptic actomyosin subpopulation that upholds the neuronal mechanical continuum, transmits signals to adjacent muscle tissue, and collaborates with Integrin receptors to govern the mechanobiology of the neuromuscular junction.

6.
Nat Commun ; 14(1): 999, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890170

RESUMEN

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Asunto(s)
Actinas , Tirosina-ARNt Ligasa , Animales , Humanos , Actinas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Drosophila/genética , Glicina-ARNt Ligasa/genética , Mutación , ARN de Transferencia , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Línea Celular Tumoral
7.
Mol Biol Cell ; 34(6): ar51, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542486

RESUMEN

Following exocytosis at active zones, synaptic vesicle membranes and membrane-bound proteins must be recycled. The endocytic machinery that drives this recycling accumulates in the periactive zone (PAZ), a region of the synapse adjacent to active zones, but the organization of this machinery within the PAZ, and how PAZ composition relates to active zone release properties, remains unknown. The PAZ is also enriched for cell adhesion proteins, but their function at these sites is poorly understood. Here, using Airyscan and stimulated emission depletion imaging of Drosophila synapses, we develop a quantitative framework describing the organization and ultrastructure of the PAZ. Different endocytic proteins localize to distinct regions of the PAZ, suggesting that subdomains are specialized for distinct biochemical activities, stages of membrane remodeling, or synaptic functions. We find that the accumulation and distribution of endocytic but not adhesion PAZ proteins correlate with the abundance of the scaffolding protein Bruchpilot at active zones-a structural correlate of release probability. These data suggest that endocytic and exocytic activities are spatially correlated. Taken together, our results identify novel relationships between the exocytic and endocytic apparatus at the synapse and provide a new conceptual framework to quantify synaptic architecture.


Asunto(s)
Proteínas de Drosophila , Sinapsis , Animales , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Drosophila/metabolismo , Transmisión Sináptica
8.
Neuron ; 110(5): 735-737, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35240059

RESUMEN

In this issue of Neuron, Yang et al. show that autophagy machinery is tightly coupled to neuronal activity via endocytic cycling of the transmembrane protein ATG-9 at presynaptic terminals.


Asunto(s)
Autofagosomas , Endocitosis , Autofagosomas/metabolismo , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Endocitosis/fisiología , Neuronas/metabolismo
9.
J Cell Biol ; 221(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35320349

RESUMEN

Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.


Asunto(s)
Vesículas Extracelulares , Vesículas Sinápticas , Endosomas , Vesículas Extracelulares/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo
10.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019080

RESUMEN

Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Vesículas Extracelulares/metabolismo , Terminales Presinápticos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Vesículas Extracelulares/genética , Vesículas Extracelulares/ultraestructura , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Terminales Presinápticos/ultraestructura , Transporte de Proteínas , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética
11.
Proc Natl Acad Sci U S A ; 117(21): 11760-11769, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32393629

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de Unión al ADN , Dendritas , Regulación de la Expresión Génica/genética , Transducción de Señal , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dendritas/metabolismo , Dendritas/patología , Células HEK293 , Humanos , ARN Mensajero/metabolismo , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteinopatías TDP-43
12.
Curr Opin Neurobiol ; 63: 104-110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32387925

RESUMEN

Neurons release membrane-bound extracellular vesicles (EVs) carrying proteins, nucleic acids, and other cargoes to mediate neuronal development, plasticity, inflammation, regeneration, and degeneration. Functional studies and therapeutic interventions into EV-dependent processes will require a deep understanding of how neuronal EVs are formed and released. However, unraveling EV biogenesis and trafficking mechanisms is challenging, since there are multiple pathways governing generation of different types of EVs, which overlap mechanistically with each other, as well as with intracellular endolysosomal trafficking pathways. Further, neurons present special considerations for EVs due to their extreme morphologies and specialization for membrane traffic. Here, we review recent work elucidating neuronal pathways that regulate EV biogenesis and release, with the goal of identifying directed strategies for experimental and therapeutic targeting of specific types of EVs.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Neuronas , Transporte de Proteínas , Proteínas/metabolismo
13.
ACS Chem Biol ; 15(3): 789-798, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32109354

RESUMEN

The high mannose patch (HMP) of the HIV envelope protein (Env) is the structure most frequently targeted by broadly neutralizing antibodies; therefore, many researchers have attempted to use mimics of this region as a vaccine immunogen. In our previous efforts, vaccinating rabbits with evolved HMP mimic glycopeptides containing Man9 resulted in an overall antibody response targeting the glycan core and linker rather than the full glycan or Manα1→2Man tips of Man9 glycans. A possible reason could be processing of our immunogen by host serum mannosidases. We sought to test whether more prolonged dosing could increase the antibody response to intact glycans, possibly by increasing the availability of intact Man9 to germinal centers. Here, we describe a study investigating the impact of immunization regimen on antibody response by testing immunogen delivery through bolus, an exponential series of mini doses, or a continuously infusing mini-osmotic pump. Our results indicate that, with our glycopeptide immunogens, standard bolus immunization elicited the strongest HIV Env-binding antibody response, even though higher overall titers to the glycopeptide were elicited by the exponential and pump regimens. Antibody selectivity for intact glycan was, if anything, slightly better in the bolus-immunized animals.


Asunto(s)
Vacunas contra el SIDA/metabolismo , Glicopéptidos/química , Anticuerpos Anti-VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Oligosacáridos/química , Vacunas Conjugadas/metabolismo , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Sitios de Unión , Glicosilación , Proteína gp120 de Envoltorio del VIH/metabolismo , Proteína gp120 de Envoltorio del VIH/orina , Infecciones por VIH/prevención & control , Humanos , Inmunización , Manosidasas/metabolismo , Oligosacáridos/orina , Unión Proteica , Conformación Proteica , Conejos , Bibliotecas de Moléculas Pequeñas/química , Vacunación
14.
Nanoscale ; 11(39): 18464-18474, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31577313

RESUMEN

While cells offer numerous inspiring examples in which membrane morphology and function are controlled by interactions with viruses or proteins, we still lack design principles for controlling membrane morphology in synthetic systems. With experiments and simulations, we show that spherical nanoparticles binding to lipid-bilayer membrane vesicles results in a remarkably rich set of collective morphologies that are controllable via the particle binding energy. We separately study cationic and anionic particles, where the adhesion is tuned by addition of oppositely charged lipids to the vesicles. When the binding energy is weak relative to a characteristic membrane-bending energy, vesicles adhere to one another and form a soft solid gel, a novel and useful platform for controlled release. With larger binding energy, a transition from partial to complete wrapping of the nanoparticles causes a remarkable vesicle destruction process culminating in rupture, nanoparticle-membrane tubules, and an apparent inversion of the vesicles. These findings help unify the diverse phenomena observed previously. They also open the door to a new class of vesicle-based, closed-cell gels that are more than 99% water and can encapsulate and release on demand, and show how to drive intentional membrane remodeling for shape-responsive systems.


Asunto(s)
Membrana Dobles de Lípidos/química , Nanopartículas/química , Geles/química
15.
J Cell Biol ; 218(8): 2600-2618, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31253649

RESUMEN

The activities of neuronal signaling receptors depend heavily on the maturation state of the endosomal compartments in which they reside. However, it remains unclear how the distribution of these compartments within the uniquely complex morphology of neurons is regulated and how this distribution itself affects signaling. Here, we identified mechanisms by which Sorting Nexin 16 (SNX16) controls neuronal endosomal maturation and distribution. We found that higher-order assembly of SNX16 via its coiled-coil (CC) domain drives membrane tubulation in vitro and endosome association in cells. In Drosophila melanogaster motor neurons, activation of Rab5 and CC-dependent self-association of SNX16 lead to its endosomal enrichment, accumulation in Rab5- and Rab7-positive tubulated compartments in the cell body, and concomitant depletion of SNX16-positive endosomes from the synapse. This results in accumulation of synaptic growth-promoting bone morphogenetic protein receptors in the cell body and correlates with increased synaptic growth. Our results indicate that Rab regulation of SNX16 assembly controls the endosomal distribution and signaling activities of receptors in neurons.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Endosomas/metabolismo , Neuronas Motoras/metabolismo , Nexinas de Clasificación/metabolismo , Secuencia de Aminoácidos , Animales , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Cuerpo Celular/metabolismo , Proteínas de Drosophila/química , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Neuromuscular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Dominios Proteicos , Multimerización de Proteína , Transducción de Señal , Nexinas de Clasificación/química , Proteínas de Unión al GTP rab/metabolismo
16.
J Cell Biol ; 218(7): 2082-2083, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189610

RESUMEN

Loss of the phosphoinositide 5-phosphatase OCRL causes accumulation of PtdIns(4,5)P2 on membranes and, ultimately, Lowe syndrome. In this issue, Mondin et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201805155) discover that a surprising partnership between PTEN and the phospholipase PLCXD can compensate for OCRL to suppress endosomal PtdIns(4,5)P2 accumulation.


Asunto(s)
Síndrome Oculocerebrorrenal , Fosfatidilinositoles , Endosomas , Humanos , Fosfohidrolasa PTEN , Fosfatidilinositol 4,5-Difosfato , Monoéster Fosfórico Hidrolasas
17.
J Am Chem Soc ; 140(30): 9566-9573, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29995402

RESUMEN

The endoplasmic reticulum (ER) is responsible for the synthesis and folding of a large number of proteins, as well as intracellular calcium regulation, lipid synthesis, and lipid transfer to other organelles, and is emerging as a target for cancer therapy. However, strategies for selectively targeting the ER of cancer cells are limited. Here we show that enzymatically generated crescent-shaped supramolecular assemblies of short peptides disrupt cell membranes and target ER for selective cancer cell death. As revealed by sedimentation assay, the assemblies interact with synthetic lipid membranes. Live cell imaging confirms that the assemblies impair membrane integrity, which is further supported by lactate dehydrogenase (LDH) assays. According to transmission electron microscopy (TEM), static light scattering (SLS), and critical micelle concentration (CMC), attaching an l-amino acid at the C-terminal of a d-tripeptide results in the crescent-shaped supramolecular assemblies. Structure-activity relationship suggests that the crescent-shaped morphology is critical for interacting with membranes and for controlling cell fate. Moreover, fluorescent imaging indicates that the assemblies accumulate on the ER. Time-dependent Western blot and ELISA indicate that the accumulation causes ER stress and subsequently activates the caspase signaling cascade for cell death. As an approach for in situ generating membrane binding scaffolds (i.e., the crescent-shaped supramolecular assemblies), this work promises a new way to disrupt the membrane and to target the ER for developing anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Oligopéptidos/farmacología , Fosfopéptidos/farmacología , Fosfatasa Alcalina/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Liposomas/metabolismo , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Oligopéptidos/metabolismo , Fosfopéptidos/síntesis química , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Multimerización de Proteína , Relación Estructura-Actividad
18.
J Am Chem Soc ; 140(10): 3505-3509, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29481071

RESUMEN

Despite the advancement of molecular imaging techniques, there is an unmet need for probes for direct imaging of membrane dynamics of live cells. Here we report a novel type of active (or enzyme responsive) probes to directly image membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas. Because lipid rafts enrich cholesterols and GPI-anchored enzymes (e.g., ectophosphatases), we design probes that consist of an enzymatic trigger, a fluorophore, and a cholesterol that are affinitive to the cell membrane. Being water-soluble and as the substrate of ectophosphatase, these cell compatible probes preferentially and rapidly assemble in plasma membrane, exhibit strong fluorescence, work at micromolar concentrations, and easily achieve high resolution monitoring of nanoscale heterogeneity in membranes of live cells, the release of exosomes, and the membrane dynamics of live cells. This work provides a facile means to link membrane dynamics and heterogeneity to cellular processes for understanding the interactions between membranes and proteins.


Asunto(s)
Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Imagen Molecular , Línea Celular , Membrana Celular/química , Supervivencia Celular , Humanos , Estructura Molecular
19.
Mol Ther ; 26(2): 648-658, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29396265

RESUMEN

Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.


Asunto(s)
Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Péptidos/farmacología , Pinocitosis/efectos de los fármacos , Taurina , Animales , Transporte Biológico , Línea Celular , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Estructura Molecular , Péptidos/química , Transducción de Señal/efectos de los fármacos , Taurina/química
20.
Angew Chem Int Ed Engl ; 56(51): 16297-16301, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29125896

RESUMEN

Higher-order assemblies of proteins, with a structural and dynamic continuum, is an important concept in biology, but these insights have yet to be applied in designing biomaterials. Dynamic assemblies of supramolecular phosphoglycopeptides (sPGPs) transform a 2D cell sheet into 3D cell spheroids. A ligand-receptor interaction between a glycopeptide and a phosphopeptide produces sPGPs that form nanoparticles, which transform into nanofibrils upon partial enzymatic dephosphorylation. The assemblies form dynamically and hierarchically in situ on the cell surface, and interact with the extracellular matrix molecules and effectively abolish contact inhibition of locomotion (CIL) of the cells. Integrating molecular recognition, catalysis, and assembly, these active assemblies act as a dynamic continuum to disrupt CIL, thus illustrating a new kind of biomaterial for regulating cell behavior.


Asunto(s)
Glicopéptidos/metabolismo , Esferoides Celulares/química , Línea Celular , Fluorescencia , Glicopéptidos/química , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Estructura Molecular , Esferoides Celulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...