Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175952

RESUMEN

Phosphoglucomutase 1 (PGM1) is a key enzyme for the regulation of energy metabolism from glycogen and glycolysis, as it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. PGM1 deficiency is an autosomal recessive disorder characterized by a highly heterogenous clinical spectrum, including hypoglycemia, cleft palate, liver dysfunction, growth delay, exercise intolerance, and dilated cardiomyopathy. Abnormal protein glycosylation has been observed in this disease. Oral supplementation with D-galactose efficiently restores protein glycosylation by replenishing the lacking pool of UDP-galactose, and rescues some symptoms, such as hypoglycemia, hepatopathy, and growth delay. However, D-galactose effects on skeletal muscle and heart symptoms remain unclear. In this study, we established an in vitro muscle model for PGM1 deficiency to investigate the role of PGM1 and the effect of D-galactose on nucleotide sugars and energy metabolism. Genome-editing of C2C12 myoblasts via CRISPR/Cas9 resulted in Pgm1 (mouse homologue of human PGM1, according to updated nomenclature) knockout clones, which showed impaired maturation to myotubes. No difference was found for steady-state levels of nucleotide sugars, while dynamic flux analysis based on 13C6-galactose suggested a block in the use of galactose for energy production in knockout myoblasts. Subsequent analyses revealed a lower basal respiration and mitochondrial ATP production capacity in the knockout myoblasts and myotubes, which were not restored by D-galactose. In conclusion, an in vitro mouse muscle cell model has been established to study the muscle-specific metabolic mechanisms in PGM1 deficiency, which suggested that galactose was unable to restore the reduced energy production capacity.


Asunto(s)
Hipoglucemia , Fosfoglucomutasa , Animales , Ratones , Galactosa/farmacología , Glucosa , Homeostasis , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Nucleótidos , Fosfatos , Fosfoglucomutasa/genética , Fosfoglucomutasa/metabolismo
2.
Genet Med ; 25(7): 100838, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37057673

RESUMEN

PURPOSE: Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) regulates cell growth in response to nutritional status. Central to the mTORC1 function is the Rag-GTPase heterodimer. One component of the Rag heterodimer is RagC (Ras-related GTP-binding protein C), which is encoded by the RRAGC gene. METHODS: Genetic testing via trio exome sequencing was applied to identify the underlying disease cause in 3 infants with dilated cardiomyopathy, hepatopathy, and brain abnormalities, including pachygyria, polymicrogyria, and septo-optic dysplasia. Studies in patient-derived skin fibroblasts and in a HEK293 cell model were performed to investigate the cellular consequences. RESULTS: We identified 3 de novo missense variants in RRAGC (NM_022157.4: c.269C>A, p.(Thr90Asn), c.353C>T, p.(Pro118Leu), and c.343T>C, p.(Trp115Arg)), which were previously reported as occurring somatically in follicular lymphoma. Studies of patient-derived fibroblasts carrying the p.(Thr90Asn) variant revealed increased cell size, as well as dysregulation of mTOR-related p70S6K (ribosomal protein S6 kinase 1) and transcription factor EB signaling. Moreover, subcellular localization of mTOR was decoupled from metabolic state. We confirmed the key findings for all RRAGC variants described in this study in a HEK293 cell model. CONCLUSION: The above results are in line with a constitutive overactivation of the mTORC1 pathway. Our study establishes de novo missense variants in RRAGC as cause of an early-onset mTORopathy with unfavorable prognosis.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas , Serina-Treonina Quinasas TOR , Humanos , Lactante , Fibroblastos/metabolismo , Enfermedades Genéticas Congénitas/genética , Células HEK293 , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/genética , Mutación Missense , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
3.
Ann Neurol ; 91(2): 225-237, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954817

RESUMEN

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Asunto(s)
Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/genética , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/genética , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Distonía/enzimología , Distonía/genética , Epilepsia/genética , Variación Genética , Humanos , Mitocondrias/genética , Translocasas Mitocondriales de ADP y ATP/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Modelos Moleculares , Mutación , Mutación Missense , Linaje , Fenotipo , Proteómica , Secuenciación del Exoma
4.
JIMD Rep ; 60(1): 15-22, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34258137

RESUMEN

BACKGROUND: d-lactate, one of the isomers of lactate, exists in a low concentration in healthy individuals and it can be oxidized to pyruvate catalyzed by d-lactate dehydrogenase. Excessive amount of d-lactate causes d-lactate acidosis associated with neurological manifestations. METHODS AND RESULTS: We report here a patient with developmental delay, cerebellar ataxia, and transient hepatomegaly. Enzyme analysis in the patient's skin fibroblast showed decreased mitochondrial complex IV activity. Using whole exome sequencing, we identified compound heterozygous variants in the LDHD gene, which encodes the d-lactate dehydrogenase, consisting of a splice site variant c.469+1dupG and a missense variant c.752C>T, p.(Thr251Met) which are pathogenic and likely pathogenic respectively according to the American College of Medical Genetics and Genomics (ACMG) classification. The serum d-lactate level was subsequently detected to be elevated (0.61 mmol/L, reference value: 0-0.25 mmol/L). CONCLUSION: This is the third report on LDHD mutations associated with d-lactate elevation and was first reported to have decreased mitochondrial complex IV activity. The study provides more information on this rare metabolic condition but the association of LDHD deficiency with the clinical presentations requires further investigations.

5.
Orphanet J Rare Dis ; 16(1): 32, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33446253

RESUMEN

BACKGROUND: Movement disorders are a group of heterogeneous neurological diseases including hyperkinetic disorders with unwanted excess movements and hypokinetic disorders with reduction in the degree of movements. The objective of our study is to investigate the genetic etiology of a cohort of paediatric patients with movement disorders by whole exome sequencing and to review the potential treatment implications after a genetic diagnosis. RESULTS: We studied a cohort of 31 patients who have paediatric-onset movement disorders with unrevealing etiologies. Whole exome sequencing was performed and rare variants were interrogated for pathogenicity. Genetic diagnoses have been confirmed in 10 patients with disease-causing variants in CTNNB1, SPAST, ATP1A3, PURA, SLC2A1, KMT2B, ACTB, GNAO1 and SPG11. 80% (8/10) of patients with genetic diagnosis have potential treatment implications and treatments have been offered to them. One patient with KMT2B dystonia showed clinical improvement with decrease in dystonia after receiving globus pallidus interna deep brain stimulation. CONCLUSIONS: A diagnostic yield of 32% (10/31) was reported in our cohort and this allows a better prediction of prognosis and contributes to a more effective clinical management. The study highlights the potential of implementing precision medicine in the patients.


Asunto(s)
Trastornos Distónicos , Trastornos del Movimiento , Niño , Trastornos Distónicos/genética , Exoma/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Humanos , Trastornos del Movimiento/genética , Mutación/genética , Proteínas , ATPasa Intercambiadora de Sodio-Potasio/genética , Espastina , Secuenciación del Exoma
6.
Hum Mutat ; 42(2): 135-141, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169484

RESUMEN

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Asunto(s)
Acidosis Láctica , Encefalopatías , Cardiomiopatías , Deficiencia de Citocromo-c Oxidasa , Hepatopatías , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Acidosis Láctica/genética , Cardiomiopatías/genética , Deficiencia de Citocromo-c Oxidasa/genética , Humanos , Recién Nacido , Proteínas Mitocondriales/metabolismo
7.
Hum Genomics ; 14(1): 28, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32907636

RESUMEN

BACKGROUND: Mitochondrial diseases (MDs) are a group of clinically and genetically heterogeneous disorders characterized by defects in oxidative phosphorylation. Since clinical phenotypes of MDs may be non-specific, genetic diagnosis is crucial for guiding disease management. In the current study, whole-exome sequencing (WES) was performed for our paediatric-onset MD cohort of a Southern Chinese origin, with the aim of identifying key disease-causing variants in the Chinese patients with MDs. METHODS: We recruited Chinese patients who had paediatric-onset MDs and a minimum mitochondrial disease criteria (MDC) score of 3. Patients with positive target gene or mitochondrial DNA sequencing results were excluded. WES was performed, variants with population frequency ≤ 1% were analysed for pathogenicity on the basis of the American College of Medical Genetics and Genomics guidelines. RESULTS: Sixty-six patients with pre-biopsy MDC scores of 3-8 were recruited. The overall diagnostic yield was 35% (23/66). Eleven patients (17%) were found to have mutations in MD-related genes, with COQ4 having the highest mutation rate owing to the Chinese-specific founder mutation (4/66, 6%). Twelve patients (12/66, 18%) had mutations in non-MD-related genes: ATP1A3 (n = 3, two were siblings), ALDH5A1, ARX, FA2H, KCNT1, LDHD, NEFL, NKX2-2, TBCK, and WAC. CONCLUSIONS: We confirmed that the COQ4:c.370G>A, p.(Gly124Ser) variant, was a founder mutation among the Southern Chinese population. Screening for this mutation should therefore be considered while diagnosing Chinese patients suspected to have MDs. Furthermore, WES has proven to be useful in detecting variants in patients suspected to have MDs because it helps to obtain an unbiased and precise genetic diagnosis for these diseases, which are genetically heterogeneous.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Enfermedades Mitocondriales/genética , Mutación , Pueblo Asiatico/genética , Niño , China , Estudios de Cohortes , Femenino , GTP Fosfohidrolasas/genética , Predisposición Genética a la Enfermedad/etnología , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Humanos , Masculino , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/etnología , Proteínas Mitocondriales/genética , Oxigenasas de Función Mixta/genética , Proteínas Nucleares , ATPasa Intercambiadora de Sodio-Potasio/genética , Factores de Transcripción
8.
Am J Hum Genet ; 106(1): 102-111, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31883641

RESUMEN

Isolated complex III (CIII) deficiencies are among the least frequently diagnosed mitochondrial disorders. Clinical symptoms range from isolated myopathy to severe multi-systemic disorders with early death and disability. To date, we know of pathogenic variants in genes encoding five out of 10 subunits and five out of 13 assembly factors of CIII. Here we describe rare bi-allelic variants in the gene of a catalytic subunit of CIII, UQCRFS1, which encodes the Rieske iron-sulfur protein, in two unrelated individuals. Affected children presented with low CIII activity in fibroblasts, lactic acidosis, fetal bradycardia, hypertrophic cardiomyopathy, and alopecia totalis. Studies in proband-derived fibroblasts showed a deleterious effect of the variants on UQCRFS1 protein abundance, mitochondrial import, CIII assembly, and cellular respiration. Complementation studies via lentiviral transduction and overexpression of wild-type UQCRFS1 restored mitochondrial function and rescued the cellular phenotype, confirming UQCRFS1 variants as causative for CIII deficiency. We demonstrate that mutations in UQCRFS1 can cause mitochondrial disease, and our results thereby expand the clinical and mutational spectrum of CIII deficiencies.


Asunto(s)
Alopecia/patología , Cardiomiopatías/patología , Complejo III de Transporte de Electrones/deficiencia , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/patología , Mutación , Alelos , Alopecia/genética , Cardiomiopatías/genética , Niño , Complejo III de Transporte de Electrones/genética , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/genética , Linaje
9.
NPJ Genom Med ; 4: 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396399

RESUMEN

Primary coenzyme Q10 deficiency-7 (COQ10D7) is a rare mitochondrial disease caused by biallelic mutations in COQ4. Here we report the largest cohort of COQ10D7 to date, with 11 southern Chinese patients confirmed with biallelic COQ4 mutations. Five of them have the classical neonatal-onset encephalo-cardiomyopathy, while the others have infantile onset with more heterogeneous clinical presentations. We also identify a founder mutation COQ4 (NM_016035.5): c.370G>A, p.(Gly124Ser) for COQ10D7, suggesting a higher chance of occurrence in the southern Chinese. This study helps improve understanding of the clinical spectrum of this disorder.

10.
Brain Dev ; 41(10): 883-887, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31324350

RESUMEN

BACKGROUND: ARX genetic defect is associated with a spectrum of neurodevelopmental disorders that exhibit a high degree of phenotypic heterogeneity. METHODS: We studied a family with a 13-year old Chinese boy and his two elder brothers presented with infantile epileptic-dyskinetic encephalopathy and clarified the unknown genetic etiology of the youngest brother by whole exome sequencing. RESULTS: The youngest brother of this family presented with developmental regression, dystonia, epilepsy, microcephaly, visual impairment and oromotor dysfunction. Hyperlactataemia, raised alanine and muscle complex IV deficiency indicated that he had mitochondrial dysfunction. Likely pathogenic hemizygous missense ARX variants (c.989G > A; p.Arg330His) located in conserved nuclear localization sequence was identified. The variant was carried by his asymptomatic mother and not found in his asymptomatic third elder brother. The intractable seizures showed complete but transient responsiveness to pyridoxal phosphate and finally controlled by valproate treatment. CONCLUSION: This is the first case of ARX-associated encephalopathy showing mitochondrial dysfunction and transient responsiveness to pyridoxal phosphate treatment.


Asunto(s)
Proteínas de Homeodominio/genética , Espasmos Infantiles/etiología , Espasmos Infantiles/genética , Factores de Transcripción/genética , Adolescente , Adulto , Pueblo Asiatico/genética , China , Deficiencia de Citocromo-c Oxidasa/metabolismo , Trastornos Distónicos/genética , Epilepsia/fisiopatología , Familia , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mitocondrias , Músculo Esquelético/metabolismo , Mutación , Linaje , Fenotipo , Convulsiones/fisiopatología , Espasmos Infantiles/metabolismo , Ácido Valproico/farmacología
11.
JIMD Rep ; 47(1): 23-29, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31240163

RESUMEN

BACKGROUND: Primary coenzyme Q10 (CoQ10) deficiencies are clinically and genetically heterogeneous group of disorders associated with defects of genes involved in the CoQ10 biosynthesis pathway. COQ7-associated CoQ10 deficiency is very rare and only two cases have been reported. METHODS AND RESULTS: We report a patient with encephalo-myo-nephro-cardiopathy, persistent lactic acidosis, and basal ganglia lesions resulting in early infantile death. Using whole exome sequencing, we identified compound heterozygous variants in the COQ7 gene consisting of a deletion insertion resulting in frameshift [c.599_600delinsTAATGCATC, p.(Lys200Ilefs*56)] and a missense substitution [c.319C>T, p.(Arg107Trp), NM_016138.4]. Skin fibroblast studies showed decreased combined complex II + III activity and reduction in CoQ10 level. CONCLUSION: This third patient presenting with lethal encephalo-myo-nephro-cardiopathy represents the severe end of this ultra-rare mitochondrial disease caused by biallelic COQ7 mutations. The response to CoQ10 supplement is poor and alternative treatment strategies should be developed for a more effective management of this disorder.

12.
J Mol Diagn ; 21(3): 503-513, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30872186

RESUMEN

Mitochondrial disease (MD) is a group of rare inherited disorders with clinical heterogeneous phenotypes. Recent advances in next-generation sequencing (NGS) allow for rapid genetic diagnostics in patients who experience MD, resulting in significant strides in determining its etiology. This, however, has not been the case in many patient populations. We report on a molecular diagnostic study using mitochondrial DNA and targeted nuclear DNA (nDNA) NGS of an extensive cohort of predominantly sub-Saharan African pediatric patients with clinical and biochemically defined MD. Patients in this novel cohort presented mostly with muscle involvement (73%). Of the original 212 patients, a muscle respiratory chain deficiency was identified in 127 cases. Genetic analyses were conducted for these 127 cases based on biochemical deficiencies, for both mitochondrial (n = 123) and nDNA using panel-based NGS (n = 86). As a pilot investigation, whole-exome sequencing was performed in a subset of African patients (n = 8). These analyses resulted in the identification of a previously reported pathogenic mitochondrial DNA variant and seven pathogenic or likely pathogenic nDNA variants (ETFDH, SURF1, COQ6, RYR1, STAC3, ALAS2, and TRIOBP), most of which were identified via whole-exome sequencing. This study contributes to knowledge of MD etiology in an understudied, ethnically diverse population; highlights inconsistencies in genotype-phenotype correlations; and proposes future directions for diagnostic approaches in such patient populations.


Asunto(s)
Núcleo Celular/genética , Etnicidad/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Niño , Estudios de Cohortes , ADN Mitocondrial/genética , Transporte de Electrón/genética , Femenino , Humanos , Masculino , Mutación/genética
13.
J Pediatr ; 196: 309-313.e3, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29395179

RESUMEN

We demonstrate that a heterozygous nuclear variant in the gene encoding mitochondrial complex I subunit NDUFV1 aggravates the cellular phenotype in the presence of a mitochondrial DNA variant in complex I subunit ND1. Our findings suggest that heterozygous variants could be more significant in inherited mitochondrial diseases than hitherto assumed.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , NADH Deshidrogenasa/genética , Niño , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Femenino , Pruebas Genéticas/métodos , Heterocigoto , Humanos , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico , Mutación , Fenotipo
14.
Eur J Hum Genet ; 25(11): 1273-1277, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28853723

RESUMEN

Mitochondrial respiratory chain complex I consists of 44 different subunits and can be subgrouped into three functional modules: the Q-, the P- and the N-module. NDUFAF4 (C6ORF66) is an assembly factor of complex I that associates with assembly intermediates of the Q-module. Via exome sequencing, we identified a homozygous missense variant in a complex I-deficient patient with Leigh syndrome. Supercomplex analysis in patient fibroblasts revealed specifically altered stoichiometry. Detailed assembly analysis of complex I, indicative of all of its assembly routes, showed an accumulation of parts of the P- and the N-module but not the Q-module. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and the assembly defect, confirming the causal role of the variant. Our report on the second family affected by an NDUFAF4 variant further characterizes the phenotypic spectrum and sheds light into the role of NDUFAF4 in mitochondrial complex I biogenesis.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Enfermedad de Leigh/genética , Mutación Missense , Proteínas de Unión a Calmodulina/metabolismo , Células Cultivadas , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Homocigoto , Humanos , Lactante , Enfermedad de Leigh/patología , Masculino , Multimerización de Proteína
15.
Mitochondrion ; 37: 46-54, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28687512

RESUMEN

Recessive mutations in EXOSC3, encoding a subunit of the human RNA exosome complex, cause pontocerebellar hypoplasia type 1b (PCH1B). We report a boy with severe muscular hypotonia, psychomotor retardation, progressive microcephaly, and cerebellar atrophy. Biochemical abnormalities comprised mitochondrial complex I and pyruvate dehydrogenase complex (PDHc) deficiency. Whole exome sequencing uncovered a known EXOSC3 mutation p.(D132A) as the underlying cause. In patient fibroblasts, a large portion of the EXOSC3 protein was trapped in the cytosol. MtDNA copy numbers in muscle were reduced to 35%, but mutations in the mtDNA and in nuclear mitochondrial genes were ruled out. RNA-Seq of patient muscle showed highly increased mRNA copy numbers, especially for genes encoding structural subunits of OXPHOS complexes I, III, and IV, possibly due to reduced degradation by a dysfunctional exosome complex. This is the first case of mitochondrial dysfunction associated with an EXOSC3 mutation, which expands the phenotypic spectrum of PCH1B. We discuss the links between exosome and mitochondrial dysfunction.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación , Atrofias Olivopontocerebelosas/genética , Atrofias Olivopontocerebelosas/patología , Proteínas de Unión al ARN/genética , Complejo I de Transporte de Electrón/deficiencia , Humanos , Lactante , Masculino , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa
16.
Genet Med ; 19(6): 667-675, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28574513

RESUMEN

PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Enfermedades Genéticas Congénitas/genética , Secuenciación Completa del Genoma , Estudios de Cohortes , Genoma Humano , Humanos , Patrón de Herencia , Masculino , Polimorfismo de Nucleótido Simple
17.
BBA Clin ; 6: 19-24, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27331024

RESUMEN

The m.3243A > G mutation is the most prevalent, disease-causing mitochondrial DNA (mtDNA) mutation. In a national cohort study of 48 families harbouring the m.3243A > G mutation, we identified three families in which the mutation appeared to occur sporadically within these families. In this report we describe these three families. Based on detailed mtDNA analysis of three different tissues using two different quantitative pyrosequencing assays with sensitivity to a level of 1% mutated mtDNA, we conclude that the m.3243A > G mutation has arisen de novo in each of these families. The symptomatic carriers presented with a variety of symptoms frequently observed in patients harbouring the m.3243A > G mutation. A more severe phenotype is seen in the de novo families compared to recent cohort studies, which might be due to reporting bias. The observation that de novo m.3243A > G mutations exist is of relevance for both diagnostic investigations and genetic counselling. Firstly, even where there is no significant (maternal) family history in patients with stroke-like episodes, diabetes and deafness or other unexplained organ dysfunction, the m.3243A > G mutation should be screened as a possible cause of the disease. Second, analysis of maternally-related family members is highly recommended to provide reliable counselling for these families, given that the m.3243A > G mutation may have arisen de novo.

18.
Sci Rep ; 5: 8035, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25620325

RESUMEN

In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedad de Leigh/genética , Aprendizaje Automático , Enfermedades Mitocondriales/genética , Cromanos/administración & dosificación , Citrato (si)-Sintasa/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
19.
Eur J Hum Genet ; 23(2): 202-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24781757

RESUMEN

Defects in complex II of the mitochondrial respiratory chain are a rare cause of mitochondrial disorders. Underlying autosomal-recessive genetic defects are found in most of the 'SDHx' genes encoding complex II (SDHA, SDHB, SDHC, and SDHD) and its assembly factors. Interestingly, SDHx genes also function as tumor suppressor genes in hereditary paragangliomas, pheochromocytomas, and gastrointestinal stromal tumors. In these cases, the affected patients are carrier of a heterozygeous SDHx germline mutation. Until now, mutations in SDHx associated with mitochondrial disease have not been reported in association with hereditary tumors and vice versa. Here, we characterize four patients with isolated complex II deficiency caused by mutations in SDHA presenting with multisystem mitochondrial disease including Leigh syndrome (LS) and/or leukodystrophy. Molecular genetic analysis revealed three novel mutations in SDHA. Two mutations (c.64-2A>G and c.1065-3C>A) affect mRNA splicing and result in loss of protein expression. These are the first mutations described affecting SDHA splicing. For the third new mutation, c.565T>G, we show that it severely affects enzyme activity. Its pathogenicity was confirmed by lentiviral complementation experiments on the fibroblasts of patients carrying this mutation. It is of special interest that one of our LS patients harbored the c.91C>T (p.Arg31*) mutation that was previously only reported in association with paragangliomas and pheochromocytomas, tightening the gap between these two rare disorders. As tumor screening is recommended for SDHx mutation carriers, this should also be considered for patients with mitochondrial disorders and their family members.


Asunto(s)
Complejo II de Transporte de Electrones/genética , Enfermedad de Leigh/genética , Leucoencefalopatías/genética , Neoplasias/genética , Secuencia de Aminoácidos , Células Cultivadas , Niño , Preescolar , Complejo II de Transporte de Electrones/química , Fibroblastos/metabolismo , Humanos , Lactante , Enfermedad de Leigh/diagnóstico , Leucoencefalopatías/diagnóstico , Datos de Secuencia Molecular , Mutación Missense , Empalme del ARN
20.
Hum Mutat ; 36(1): 34-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339201

RESUMEN

COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Deficiencia de Citocromo-c Oxidasa/genética , Complejo IV de Transporte de Electrones/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/patología , Cobre/administración & dosificación , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Células HEK293 , Humanos , Recién Nacido , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...