Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 285(17): 12813-22, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20164178

RESUMEN

The regulation of enzyme activity through the transient formation of multiprotein assemblies plays an important role in the control of biosynthetic pathways. One of the first regulatory complexes to be discovered was cysteine synthase (CS), formed by the pyridoxal 5'-phosphate-dependent enzyme O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). These enzymes are at the branch point of the sulfur, carbon, and nitrogen assimilation pathways. Understanding the mechanism of complex formation helps to clarify the role played by CS in the regulation of sulfur assimilation in bacteria and plants. To this goal, stopped-flow fluorescence spectroscopy was used to characterize the interaction of SAT with OASS, at different temperatures and pH values, and in the presence of the physiological regulators cysteine and bisulfide. Results shed light on the mechanism of complex formation and regulation, so far poorly understood. Cysteine synthase assembly occurs via a two-step mechanism involving rapid formation of an encounter complex between the two enzymes, followed by a slow conformational change. The conformational change likely results from the closure of the active site of OASS upon binding of the SAT C-terminal peptide. Bisulfide, the second substrate and a feedback inhibitor of OASS, stabilizes the CS complex mainly by decreasing the back rate of the isomerization step. Cysteine, the product of the OASS reaction and a SAT inhibitor, slightly affects the kinetics of CS formation leading to destabilization of the complex.


Asunto(s)
Proteínas Bacterianas/química , Cisteína Sintasa/química , Haemophilus influenzae/enzimología , Complejos Multienzimáticos/química , Serina O-Acetiltransferasa/química , Proteínas Bacterianas/metabolismo , Cisteína Sintasa/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Complejos Multienzimáticos/metabolismo , Plantas/enzimología , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina O-Acetiltransferasa/metabolismo , Espectrometría de Fluorescencia , Azufre/metabolismo
2.
J Med Chem ; 53(1): 345-56, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19928859

RESUMEN

The inhibition of cysteine biosynthesis in prokaryotes and protozoa has been proposed to be relevant for the development of antibiotics. Haemophilus influenzae O-acetylserine sulfhydrylase (OASS), catalyzing l-cysteine formation, is inhibited by the insertion of the C-terminal pentapeptide (MNLNI) of serine acetyltransferase into the active site. Four-hundred MNXXI pentapeptides were generated in silico, docked into OASS active site using GOLD, and scored with HINT. The terminal P5 Ile accounts for about 50% of the binding energy. Glu or Asp at position P4 and, to a lesser extent, at position P3 also significantly contribute to the binding interaction. The predicted affinity of 14 selected pentapeptides correlated well with the experimentally determined dissociation constants. The X-ray structure of three high affinity pentapeptide-OASS complexes were compared with the docked poses. These results, combined with a GRID analysis of the active site, allowed us to define a pharmacophoric scaffold for the design of peptidomimetic inhibitors.


Asunto(s)
Cisteína Sintasa/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Oligopéptidos/farmacología , Dominio Catalítico , Biología Computacional , Simulación por Computador , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Haemophilus influenzae/enzimología , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Relación Estructura-Actividad
3.
Biochemistry ; 48(27): 6461-8, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19485344

RESUMEN

The galacto-, homoserine-, mevalonate-, phosphomevalonate-kinase (GHMP) superfamily encompases a wide-range of protein function. Three members of the family (mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase) comprise the mevalonate pathway found in S. pneumoniae and other organisms. We have determined the 1.9 A crystal structure of phosphomevalonate kinase (PMK) from S. pneumoniae in complex with phosphomevalonate and AMPPNP.Mg(2+). Comparison of the apo and ternary PMK structures suggests that ligand binding reverses the side-chain orientations of two antiparallel lysines residues (100 and 101) with the result that Lys101 is switched into a position in which its ammonium ion is in direct contact with the beta,gamma-bridging atom of the nucleotide, where it is expected to stabilize both the ground and transition states of the reaction. Analysis of all available GHMP kinase ternary complex structures reveals that while their C(alpha)-scaffolds are highly conserved, their substrates bind in one of two conformations, which appear to be either reactive or nonreactive. The active site of PMK seems spacious enough to accommodate interconversion of the reactive and nonreactive conformers. A substantial fraction of the PMK active site is occupied by ordered water, which clusters near the charged regions of the substrate. Notably, a water pentamer that interacts extensively with the reactive groups of both substrates was discovered at the active site.


Asunto(s)
Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Solventes , Streptococcus pneumoniae/enzimología
4.
Antimicrob Agents Chemother ; 53(6): 2306-11, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19349513

RESUMEN

The bifunctional GlmU protein catalyzes the formation of UDP-N-acetylglucosamine in a two-step reaction using the substrates glucosamine-1-phosphate, acetyl coenzyme A, and UTP. This metabolite is a common precursor to the synthesis of bacterial cell surface carbohydrate polymers, such as peptidoglycan, lipopolysaccharide, and wall teichoic acid that are involved in the maintenance of cell shape, permeability, and virulence. The C-terminal acetyltransferase domain of GlmU exhibits structural and mechanistic features unique to bacterial UDP-N-acetylglucosamine synthases, making it an excellent target for antibacterial design. In the work described here, we have developed an absorbance-based assay to screen diverse chemical libraries in high throughput for inhibitors to the acetyltransferase reaction of Escherichia coli GlmU. The primary screen of 50,000 drug-like small molecules identified 63 hits, 37 of which were specific to acetyltransferase activity of GlmU. Secondary screening and mode-of-inhibition studies identified potent inhibitors where compound binding within the acetyltransferase active site was requisite on the presence of glucosamine-1-phosphate and were competitive with the substrate acetyl coenzyme A. These molecules may represent novel chemical scaffolds for future antimicrobial drug discovery. In addition, this work outlines the utility of catalytic variants in targeting specific activities of bifunctional enzymes in high-throughput screens.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Complejos Multienzimáticos/antagonistas & inhibidores , Cromatografía Líquida de Alta Presión , Diseño de Fármacos , Uridina Difosfato N-Acetilglucosamina/metabolismo
5.
Biochemistry ; 47(24): 6322-8, 2008 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-18498176

RESUMEN

A crystal structure of serine acetyltransferase (SAT) with cysteine bound in the serine subsite of the active site shows that both H154 and H189 are within hydrogen-bonding distance to the cysteine thiol [Olsen, L. R., Huang, B., Vetting, M. W., and Roderick, S. L. (2004) Biochemistry 43, 6013 -6019]. In addition, H154 is in an apparent dyad linkage with D139. The structure suggests that H154 is the most likely catalytic general base and that H189 and D139 may also play important roles during the catalytic reaction. Site-directed mutagenesis was performed to mutate each of these three residues to Asn, one at a time. The V1/Et value of all of the single mutant enzymes decreased, with the largest decrease (approximately 1240-fold) exhibited by the H154N mutant enzyme. Mutation of both histidines, H154N/H189N, gave a V1/Et approximately 23700-fold lower than that of the wild-type enzyme. An increase in K Ser was observed for the H189N, D139N, and H154N/H189N mutant enzymes, while the H154N mutant enzyme gave an 8-fold decrease in K Ser. For all three single mutant enzymes, V1/Et and V1/K Ser Et decrease at low pH and give a pKa of about 7, while the V1/Et of the double mutant enzyme was pH independent. The solvent deuterium kinetic isotope effects on V 1 and V1/K Ser decreased compared to wild type for the H154N mutant enzyme and increased for the H189N mutant enzyme but was about the same as that of wild type for D139N and H154N/H189N. Data suggest that H154, H189, and D139 play different catalytic roles for SAT. H154 likely serves as a general base, accepting a proton from the beta-hydroxyl of serine as the tetrahedral intermediate is formed upon nucleophilic attack on the thioester carbonyl of acetyl-CoA. However, activity is not completely lost upon elimination of H154, and thus, H189 may be able to serve as a backup general base at a lower efficiency compared to H154; it also aids in binding and orienting the serine substrate. Aspartate 139, in dyad linkage with H154, likely facilitates catalysis by increasing the basicity of H154.


Asunto(s)
Ácido Aspártico/química , Haemophilus influenzae/enzimología , Histidina/química , Serina O-Acetiltransferasa/química , Serina O-Acetiltransferasa/metabolismo , Sustitución de Aminoácidos/genética , Ácido Aspártico/genética , Sitios de Unión/genética , Catálisis , Cristalografía por Rayos X , Deuterio/química , Haemophilus influenzae/genética , Histidina/genética , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Serina O-Acetiltransferasa/genética , Solventes
6.
Protein Sci ; 16(6): 1230-5, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17473010

RESUMEN

The biosynthesis of UDP-GlcNAc in bacteria is carried out by GlmU, an essential bifunctional uridyltransferase that catalyzes the CoA-dependent acetylation of GlcN-1-PO(4) to form GlcNAc-1-PO(4) and its subsequent condensation with UTP to form pyrophosphate and UDP-GlcNAc. As a metabolite, UDP-GlcNAc is situated at a branch point leading to the biosynthesis of lipopolysaccharide and peptidoglycan. Consequently, GlmU is regarded as an important target for potential antibacterial agents. The crystal structure of the Escherichia coli GlmU acetyltransferase active site has been determined in complexes with acetyl-CoA, CoA/GlcN-1-PO(4), and desulpho-CoA/GlcNAc-1-PO(4). These structures reveal the enzyme groups responsible for binding the substrates. A superposition of these complex structures suggests that the 2-amino group of GlcN-1-PO(4) is positioned in proximity to the acetyl-CoA to facilitate direct attack on its thioester by a ternary complex mechanism.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Acetiltransferasas/química , Sitios de Unión , Coenzima A/química , Coenzima A/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/química , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Complejos Multienzimáticos/química , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
7.
Biochim Biophys Acta ; 1771(6): 654-62, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17499021

RESUMEN

Phosphatidylcholine transfer protein (PC-TP) is a highly specific soluble lipid binding protein that transfers phosphatidylcholine between membranes in vitro. PC-TP is a member of the steroidogenic acute regulatory protein-related transfer (START) domain superfamily. Although its biochemical properties and structure are well characterized, the functions of PC-TP in vivo remain incompletely understood. Studies of mice with homozygous disruption of the Pctp gene have largely refuted the hypothesis that this protein participates in the hepatocellular selection and transport of biliary phospholipids, in the production of lung surfactant, in leukotriene biosynthesis and in cellular phosphatidylcholine metabolism. Nevertheless, Pctp(-/-) mice exhibit interesting defects in lipid homeostasis, the understanding of which should elucidate the biological functions of PC-TP.


Asunto(s)
Lipoproteínas HDL/metabolismo , Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/metabolismo , Animales , Aterosclerosis/metabolismo , Ácidos y Sales Biliares/biosíntesis , Transporte Biológico/fisiología , Bovinos , Hígado/química , Ratones , Ratones Noqueados , Modelos Moleculares , Estructura Molecular , Proteínas de Transferencia de Fosfolípidos/biosíntesis , Proteínas de Transferencia de Fosfolípidos/genética , Estructura Terciaria de Proteína , Surfactantes Pulmonares/metabolismo , Especificidad de la Especie , Distribución Tisular
8.
Protein Sci ; 16(5): 983-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17400916

RESUMEN

Streptococcus pneumoniae, a ubiquitous gram-positive pathogen with an alarming, steadily evolving resistance to frontline antimicrobials, poses a severe global health threat both in the community and in the clinic. The recent discovery that diphosphomevalonate (DPM), an essential intermediate in the isoprenoid biosynthetic pathway, potently and allosterically inhibits S. pneumoniae mevalonate kinase (SpMK) without affecting the human isozyme established a new target and lead compound for antimicrobial design. Here we present the crystal structure of the first S. pneumoniae mevalonate kinase, at a resolution of 2.5 A and in complex with DPM.Mg(2+) in the active-site cleft. Structural comparison of SpMK with other members of the GHMP kinase family reveals that DPM functions as a partial bisubstrate analog (mevalonate linked to the pyrophosphoryl moiety of ATP) in that it elicits a ternary-complexlike form of the enzyme, except for localized disordering in a region that would otherwise interact with the missing portion of the nucleotide. Features of the SpMK-binding pockets are discussed in the context of established mechanistic findings and inherited human diseases linked to MK deficiency.


Asunto(s)
Ácido Mevalónico/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Streptococcus pneumoniae/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Humanos , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Streptococcus pneumoniae/genética
9.
FEBS Lett ; 580(25): 5953-8, 2006 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-17046758

RESUMEN

New Zealand obese (NZO/HlLt) male mice develop polygenic diabetes and altered phosphatidylcholine metabolism. The gene encoding phosphatidylcholine transfer protein (PC-TP) is sited within the support interval for Nidd3, a recessive NZO-derived locus on Chromosome 11 identified by prior segregation analysis between NZO/HlLt and NON/Lt. Sequence analysis revealed that the NZO-derived PC-TP contained a non-synonymous point mutation that resulted in an Arg120His substitution, which was shared by the related NZB/BlNJ and NZW/LacJ mouse strains. Consistent with the structure-based predictions, functional studies demonstrated that Arg120His PC-TP was inactive, suggesting that this mutation contributes to the deficiencies in phosphatidylcholine metabolism observed in NZO mice.


Asunto(s)
Ratones Endogámicos NZB/genética , Ratones Obesos/genética , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Proteínas de Transferencia de Fosfolípidos/genética , Polimorfismo Genético , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Mapeo Cromosómico , ADN Complementario/genética , Masculino , Ratones , Ratones Endogámicos , Ratones Obesos/metabolismo , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Mutación Puntual , Conformación Proteica , Especificidad de la Especie
10.
Biochemistry ; 45(1): 1-10, 2006 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-16388575

RESUMEN

The pentapeptide repeat protein (PRP) family has more than 500 members in the prokaryotic and eukaryotic kingdoms. These proteins are composed of, or contain domains composed of, tandemly repeated amino acid sequences with a consensus sequence of [S,T,A,V][D,N][L,F][S,T,R][G]. The biochemical function of the vast majority of PRP family members is unknown. The three-dimensional structure of the first member of the PRP family was determined for the fluoroquinolone resistance protein (MfpA) from Mycobacterium tuberculosis. The structure revealed that the pentapeptide repeats encode the folding of a novel right-handed quadrilateral beta-helix. MfpA binds to DNA gyrase and inhibits its activity. The rod-shaped, dimeric protein exhibits remarkable similarity in size, shape, and electrostatics to DNA.


Asunto(s)
Proteínas Bacterianas/química , Oligopéptidos/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Girasa de ADN/metabolismo , Dimerización , Farmacorresistencia Microbiana , Fluoroquinolonas/antagonistas & inhibidores , Fluoroquinolonas/química , Proteínas de Unión al GTP Monoméricas , Mycobacterium tuberculosis/química , Oligopéptidos/metabolismo , Conformación Proteica , Electricidad Estática , Relación Estructura-Actividad
11.
Protein Sci ; 14(8): 2115-24, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15987896

RESUMEN

Serine acetyltransferase is a key enzyme in the sulfur assimilation pathway of bacteria and plants, and is known to form a bienzyme complex with O-acetylserine sulfhydrylase, the last enzyme in the cysteine biosynthetic pathway. The biological function of the complex and the mechanism of reciprocal regulation of the constituent enzymes are still poorly understood. In this work the effect of complex formation on the O-acetylserine sulfhydrylase active site has been investigated exploiting the fluorescence properties of pyridoxal 5'-phosphate, which are sensitive to the cofactor microenvironment and to conformational changes within the protein matrix. The results indicate that both serine acetyltransferase and its C-terminal decapeptide bind to the alpha-carboxyl subsite of O-acetylserine sulfhydrylase, triggering a transition from an open to a closed conformation. This finding suggests that serine acetyltransferase can inhibit O-acetylserine sulfhydrylase catalytic activity with a double mechanism, the competition with O-acetylserine for binding to the enzyme active site and the stabilization of a closed conformation that is less accessible to the natural substrate.


Asunto(s)
Acetiltransferasas/química , Cisteína Sintasa/química , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Bacterias/enzimología , Sitios de Unión , Cisteína/biosíntesis , Cisteína Sintasa/metabolismo , Datos de Secuencia Molecular , Fosfato de Piridoxal/química , Serina O-Acetiltransferasa , Espectrometría de Fluorescencia
12.
C R Biol ; 328(6): 568-75, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15950163

RESUMEN

Of the proteins encoded by the three structural genes of the lac operon, the galactoside acetyltransferase (thiogalactoside transacetylase, LacA, GAT) encoded by lacA is the only protein whose biological role remains in doubt. Here, we briefly note the classical literature that led to the identification and initial characterization of GAT, and focus on more recent results which have revealed its chemical mechanism of action and its membership in a large superfamily of structurally similar acyltransferases. The structural and sequence similarities of several members of this superfamily confirm the original claim for GAT as a CoA-dependent acetyltransferase specific for the 6-hydroxyl group of certain pyranosides, but do not yet point to the identity of the natural substrate(s) of the enzyme.


Asunto(s)
Acetiltransferasas/química , Operón Lac , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Especificidad por Sustrato
13.
Science ; 308(5727): 1480-3, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15933203

RESUMEN

Fluoroquinolones are gaining increasing importance in the treatment of tuberculosis. The expression of MfpA, a member of the pentapeptide repeat family of proteins from Mycobacterium tuberculosis, causes resistance to ciprofloxacin and sparfloxacin. This protein binds to DNA gyrase and inhibits its activity. Its three-dimensional structure reveals a fold, which we have named the right-handed quadrilateral beta helix, that exhibits size, shape, and electrostatic similarity to B-form DNA. This represents a form of DNA mimicry and explains both its inhibitory effect on DNA gyrase and fluoroquinolone resistance resulting from the protein's expression in vivo.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/fisiología , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Farmacorresistencia Microbiana/fisiología , Fluoroquinolonas/farmacología , Imitación Molecular , Mycobacterium tuberculosis/fisiología , Secuencia de Aminoácidos , Antituberculosos/química , Proteínas Bacterianas/química , Ciprofloxacina/farmacología , Cristalografía por Rayos X , Girasa de ADN/metabolismo , ADN Superhelicoidal/química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Fluoroquinolonas/antagonistas & inhibidores , Fluoroquinolonas/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Unión al GTP Monoméricas , Mycobacterium tuberculosis/efectos de los fármacos , Conformación Proteica , Pliegue de Proteína , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II
14.
J Bacteriol ; 187(9): 3201-5, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15838047

RESUMEN

The biosynthesis of cysteine in bacteria and plants is carried out by a two-step pathway, catalyzed by serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS; O-acetylserine [thiol] lyase). The aerobic form of OASS forms a tight bienzyme complex with SAT in vivo, termed cysteine synthase. We have determined the crystal structure of OASS in complex with a C-terminal peptide of SAT required for bienzyme complex formation. The binding site of the peptide is at the active site of OASS, and its C-terminal carboxyl group occupies the same anion binding pocket as the alpha-carboxylate of the O-acetylserine substrate of OASS. These results explain the partial inhibition of OASS by SAT on complex formation as well as the competitive dissociation of the complex by O-acetylserine.


Asunto(s)
Acetiltransferasas/química , Cisteína Sintasa/química , Estructura Cuaternaria de Proteína , Sitios de Unión , Modelos Moleculares , Serina O-Acetiltransferasa
15.
J Biol Chem ; 280(23): 22108-14, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15817456

RESUMEN

RimL is responsible for converting the prokaryotic ribosomal protein from L12 to L7 by acetylation of its N-terminal amino group. We demonstrate that purified RimL is capable of posttranslationally acetylating L12, exhibiting a V(max) of 21 min(-1). We have also determined the apostructure of RimL from Salmonella typhimurium and its complex with coenzyme A, revealing a homodimeric oligomer with structural similarity to other Gcn5-related N-acetyltransferase superfamily members. A large central trough located at the dimer interface provides sufficient room to bind both L12 N-terminal helices. Structural and biochemical analysis indicates that RimL proceeds by single-step transfer rather than a covalent-enzyme intermediate. This is the first structure of a Gcn5-related N-acetyltransferase family member with demonstrated activity toward a protein N(alpha)-amino group and is a first step toward understanding the molecular basis for N(alpha)acetylation and its function in cellular regulation.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/fisiología , Salmonella typhimurium/enzimología , Acetiltransferasas/metabolismo , Animales , Proteínas Bacterianas , Sitios de Unión , Bovinos , Clonación Molecular , Coenzima A/química , Cristalografía por Rayos X , Dimerización , Escherichia coli/metabolismo , Cinética , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Arch Biochem Biophys ; 433(1): 85-95, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15581568

RESUMEN

Serine acetyltransferase is a member of the left-handed parallel beta-helix family of enzymes that catalyzes the committed step in the de novo synthesis of l-cysteine in bacteria and plants. The enzyme has an ordered kinetic mechanism with acetyl CoA bound prior to l-serine and O-acetyl-l-serine released prior to CoA. The rate-limiting step along the reaction pathway is the nucleophilic attack of the serine hydroxyl on the thioester of acetyl CoA. Product release contributes to rate-limitation at saturating concentrations of reactants. The reaction is catalyzed by an active site general base with a pK of 7, which accepts a proton from the serine hydroxyl as a tetrahedral intermediate is formed between the reactants, and donates it to the thiol of CoA as the intermediate collapses to give products. This mechanism is likely the same for all O-acyltransferases that catalyze their reaction by direct attack of the alcohol on the acyl donor, using an active-site histidine as the general base. Serine acetyltransferase is regulated by feedback inhibition by the end product l-cysteine, which acts by binding to the serine site in the active site and inducing a conformational change that prevents reactant binding. The enzyme also associates with O-acetylserine sulfhydrylase, the final enzyme in the biosynthetic pathway, which contributes to stabilizing the acetyltransferase.


Asunto(s)
Acetiltransferasas/metabolismo , Alcoholes/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Acetiltransferasas/química , Acetiltransferasas/genética , Sitios de Unión , Catálisis , Cisteína/metabolismo , Estabilidad de Enzimas , Retroalimentación Fisiológica , Histidina/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Modelos Estructurales , Estructura Molecular , Peso Molecular , Unión Proteica , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Serina/metabolismo , Serina O-Acetiltransferasa , Especificidad por Sustrato
17.
Arch Biochem Biophys ; 433(1): 212-26, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15581578

RESUMEN

The Gcn5-related N-acetyltransferases are an enormous superfamily of enzymes that are universally distributed in nature and that use acyl-CoAs to acylate their cognate substrates. In this review, we will examine those members of this superfamily that have been both structurally and mechanistically characterized. These include aminoglycoside N-acetyltransferases, serotonin N-acetyltransferase, glucosamine-6-phosphate N-acetyltransferase, the histone acetyltransferases, mycothiol synthase, protein N-myristoyltransferase, and the Fem family of amino acyl transferases.


Asunto(s)
Acetiltransferasas/química , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cinética , Melatonina/biosíntesis , Modelos Moleculares , Modelos Estructurales , Conformación Molecular , Estructura Molecular , Estructura Secundaria de Proteína , Especificidad por Sustrato
18.
Biochemistry ; 43(49): 15534-9, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15581365

RESUMEN

The pH dependence of kinetic parameters was determined in both reaction directions to obtain information about the acid-base chemical mechanism of serine acetyltransferase from Haemophilus influenzae (HiSAT). The maximum rates in both reaction directions, as well as the V/K(serine) and V/K(OAS), decrease at low pH, exhibiting a pK of approximately 7 for a single enzyme residue that must be unprotonated for optimum activity. The pH-independent values of V(1)/E(t), V(1)/K(serine)E(t), V/K(AcCoA)E(t), V(2)/E(t), V(2)/K(OAS)E(t), and V/K(CoA)E(t) are 3300 +/- 180 s(-1), (9.6 +/- 0.4) x 10(5) M(-1) s(-1), 3.3 x 10(6) M(-1) s(-1), 420 +/- 50 s(-1), (2.1 +/- 0.5) x 10(4) M(-1) s(-1), and (4.2 +/- 0.7) x 10(5) M(-1) s(-1), respectively. The K(i) values for the competitive inhibitors glycine and l-cysteine are pH-independent. The solvent deuterium kinetic isotope effects on V and V/K in the direction of serine acetylation are 1.9 +/- 0.2 and 2.5 +/- 0.4, respectively, and the proton inventories are linear for both parameters. Data are consistent with a single proton in flight in the rate-limiting transition state. A general base catalytic mechanism is proposed for the serine acetyltransferase. Once acetyl-CoA and l-serine are bound, an enzymic general base accepts a proton from the l-serine side chain hydroxyl as it undergoes a nucleophilic attack on the carbonyl of acetyl-CoA. The same enzyme residue then functions as a general acid, donating a proton to the sulfur atom of CoASH as the tetrahedral intermediate collapses, generating the products OAS and CoASH. The rate-limiting step in the reaction at limiting l-serine levels is likely formation of the tetrahedral intermediate between serine and acetyl-CoA.


Asunto(s)
Acetiltransferasas/química , Proteínas Bacterianas/química , Haemophilus influenzae/enzimología , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Medición de Intercambio de Deuterio , Inhibidores Enzimáticos/química , Glicina/química , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Protones , Serina O-Acetiltransferasa , Solventes
19.
Arch Biochem Biophys ; 429(2): 115-22, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15313214

RESUMEN

The kinetic mechanism of serine acetyltransferase from Haemophilus influenzae was studied in both reaction directions. The enzyme catalyzes the conversion of acetyl CoA and L-serine to O-acetyl-L-serine (OAS) and coenzyme A (CoASH). In the direction of L-serine acetylation, an equilibrium ordered mechanism is assigned at pH 6.5. The initial velocity pattern in the absence of added inhibitors is best described by a series of lines converging on the ordinate when L-serine is varied at different fixed levels of acetyl CoA. The initial velocity pattern at pH 7.5 is also intersecting, but the lines are nearly parallel. Product inhibition by OAS is noncompetitive against acetyl CoA, while it is uncompetitive against L-serine. Product inhibition by L-serine in the reverse reaction direction is noncompetitive with respect to both OAS and CoASH. Glycine and S-methyl-L-cysteine (SMC) were used as dead-end analogs of L-serine and OAS, respectively. Glycine is competitive versus L-serine and uncompetitive versus acetyl CoA, while SMC is competitive against OAS and uncompetitive against CoASH. Desulfo-CoA was used as a dead-end analog of both acetyl CoA and CoASH, and is competitive versus both substrates in the direction of L-serine acetylation; while it is competitive against CoASH and noncompetitive against OAS in the direction of CoASH acetylation. All of the above kinetic parameters are consistent with those predicted for an ordered mechanism at pH 6.5 with the exception of the uncompetitive inhibition by OAS vs. serine. The latter inhibition pattern suggests combination of OAS with the central E:acetyl CoA:serine complex. Cysteine is known to regulate its own biosynthesis at the level of SAT. As a dead-end inhibitor, L-cysteine is competitive against both substrates in both reaction directions. These results are discussed in terms of the mechanism of regulation.


Asunto(s)
Acetiltransferasas/metabolismo , Haemophilus influenzae/enzimología , Acetiltransferasas/antagonistas & inhibidores , Cinética , Serina O-Acetiltransferasa , Especificidad por Sustrato
20.
Biochemistry ; 43(20): 6013-9, 2004 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15147185

RESUMEN

Serine acetyltransferase (SAT, EC 2.3.1.30) catalyzes the CoA-dependent acetylation of the side chain hydroxyl group of l-serine to form O-acetylserine, as the first step of a two-step biosynthetic pathway in bacteria and plants leading to the formation of l-cysteine. This reaction represents a key metabolic point of regulation for the cysteine biosynthetic pathway due to its feedback inhibition by cysteine. We have determined the X-ray crystal structure of Haemophilus influenzae SAT in complexes with CoA and its cysteine feedback inhibitor. The enzyme is a 175 kDa hexamer displaying the characteristic left-handed parallel beta-helix (LbetaH) structural domain of the hexapeptide acyltransferase superfamily of enzymes. Cysteine is bound in a crevice between adjacent LbetaH domains and underneath a loop excluded from the coiled LbetaH. The proximity of its thiol group to the thiol group of CoA derived from superimposed models of the cysteine and CoA complexes confirms that cysteine is bound at the active site. Analysis of the contacts of SAT with cysteine and CoA and the conformational differences that distinguish these complexes provides a structural basis for cysteine feedback inhibition, which invokes competition between cysteine and serine binding and a cysteine-induced conformational change of the C-terminal segment of the enzyme that excludes binding of the cofactor.


Asunto(s)
Acetiltransferasas/química , Proteínas Bacterianas/química , Coenzima A/química , Cisteína/metabolismo , Estructura Cuaternaria de Proteína , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Coenzima A/metabolismo , Cristalografía por Rayos X , Haemophilus influenzae/enzimología , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Pliegue de Proteína , Alineación de Secuencia , Serina O-Acetiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...