Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 771: 136464, 2022 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-35051433

RESUMEN

The expression of c-Fos protein has been extensively used as a marker of neuronal activation in response to stressful stimuli. Early maternal separation (MS) is a model of early life adversity that affects the responsiveness of the brain areas to stressors. Thus, this study examined the impact of early MS on activating stress-responsive areas in the brain of adult rats in response to physical (ether) or psychological (restraint) stressors. Male pups were divided for the MS or non-handled (NH) groups. The MS was carried out daily between the 2nd and 14th day of postnatal life and consisted in removing the dams from the cage for 180 min. The rats were then subjected to experimental protocols of restraint or ether exposure at 10-12 weeks old. The rats were anesthetized 90 min after exposure to the stressors, and their brains were prepared for immunohistochemical analysis of c-Fos immunoreactive (c-Fos-ir) neurons in the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), medial preoptic area (MPA), medial amygdaloid nucleus (MeA), locus coeruleus (LC), and nucleus of the solitary tract (NST). The MS-group presented 86%, 125%, 73%, 56%, and 137% higher c-Fos-ir neurons in the LC, PVN, SON, MPA, and MeA, respectively, compared to NH-group in response to the restraint stressor. In addition, the MS-group presented 180%, 137%, 170%, and 138% higher c-Fos-ir neurons for the ether exposure in the LC, PVN, MPA, and MeA, respectively. Our results show a greater increase in neuronal activation in the MS group, indicating that early life adversity can induce reprogramming in the brain response to stress in adulthood.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Privación Materna , Estrés Psicológico/fisiopatología , Animales , Encéfalo/citología , Encéfalo/fisiopatología , Femenino , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar
2.
Clin Exp Pharmacol Physiol ; 43(1): 116-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26475529

RESUMEN

The effects of physical training on hypothalamic activation after exercise and their relationship with heat dissipation were investigated. Following 8 weeks of physical training, trained (TR, n = 9) and untrained (UN, n = 8) Wistar rats were submitted to a regimen of incremental running until fatigue while body and tail temperatures were recorded. After exercise, hypothalamic c-Fos immunohistochemistry analysis was performed. The workload, body-heating rate, heat storage and body temperature threshold for cutaneous vasodilation were calculated. Physical training increased the number of c-Fos immunoreactive neurons in the paraventricular, medial preoptic and median preoptic nucleus by 112%, 90% and 65% (P < 0.01) after exercise, respectively. In these hypothalamic regions, increased neuronal activation was directly associated with the increased workload performed by TR animals (P < 0.01). Moreover, a reduction of 0.6°C in the body temperature threshold for cutaneous vasodilation was shown by TR animals (P < 0.01). This reduction was possibly responsible for the lower body-heating rate (0.019 ± 0.002°C/min, TR vs 0.030 ± 0.005°C/min, UN, P < 0.05) and the decreased ratio between heat storage and the workload performed by TR animals (18.18 ± 1.65 cal/kg, TR vs 31.38 ± 5.35 cal/kg, UN, P < 0.05). The data indicate that physical training enhances hypothalamic neuronal activation during exercise. This enhancement is the central adaptation relating to better physical performance, characterized by a lower ratio of heat stored to workload performed, due to improved heat dissipation.


Asunto(s)
Hipotálamo/citología , Neuronas/citología , Condicionamiento Físico Animal , Animales , Regulación de la Temperatura Corporal , Regulación de la Expresión Génica , Calor , Hipotálamo/fisiología , Masculino , Condicionamiento Físico Animal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar
3.
Brain Res Bull ; 73(1-3): 127-34, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17499646

RESUMEN

Prolactin (PRL) secretory surges have been reported on the afternoons of both proestrus and estrous in cycling rats. As neuroendocrine regulation of estrous PRL surge is poorly understood, the present study aimed to investigate the involvement of hypothalamic dopamine and serotonin as well as of plasma ovarian steroids in this hormonal surge generation. For that, we determined the concentrations of dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in the mediobasal hypothalamus (MBH) and medial preoptic area (MPOA) throughout the day of estrus and correlated them with plasma PRL levels. In a second study, we evaluated the effect of ovariectomy on the morning of proestrus on PRL surges of both proestrus and estrus. Dopamine turnover, as determined by DOPAC/dopamine ratio, increased in both the MBH and MPOA coinciding with the afternoon PRL surge on estrus. In contrast, both the concentration and turnover (5-HIAA/serotonin) of serotonin within these areas were unaltered during estrus. In addition, ovariectomy reduced plasma estradiol and progesterone levels but did not alter the PRL surges on proestrus and estrus. Considering that dopamine is the main inhibitor of PRL release and that PRL auto-regulates its secretion through a short-loop feedback mechanism, our present results suggest that PRL may suppress its own secretion during the estrus surge through the activation of the dopaminergic neurons in the MBH and MPOA. In addition, the PRL surge on estrus seems do not depend on either the activity of hypothalamic serotonin or the increased secretion of ovarian steroids on proestrus.


Asunto(s)
Dopamina/fisiología , Estro/fisiología , Hipotálamo/fisiología , Ovariectomía , Área Preóptica/fisiología , Proestro/fisiología , Prolactina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Dopamina/metabolismo , Electroquímica , Estro/metabolismo , Femenino , Ácido Hidroxiindolacético/metabolismo , Hipotálamo/metabolismo , Área Preóptica/metabolismo , Proestro/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Serotonina/metabolismo
4.
Brain Res Bull ; 63(6): 515-20, 2004 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15249117

RESUMEN

The anteroventral region of the third ventricle (AV3V) is critical in mediating osmotic sensitivity. AV3V lesions increase plasma osmolality and block osmotic-induced vasopressin (VP) and oxytocin (OT) secretion. The aim was to evaluate the effects of AV3V lesions on neurosecretion under control/water replete conditions and after 48 h dehydration. The focus was on central peptidergic changes with measurement of OT and VP content in the hypothalamic paraventricular (PVN) and supraoptic (OT) regions and the posterior pituitary. AV3V-lesioned rats exhibited an elevated plasma osmolality and higher OT content in SON and PVN. There was an increase in VP content in PVN, but no change in SON. As predicted, the plasma peptide response to dehydration was absent in lesioned animals. However, dehydration produced depletion in posterior pituitary VP in lesioned animals with no change in OT. No changes in nuclear VP and OT levels were seen after dehydration. These results demonstrate that AV3V lesions alter the VP and OT neurosecretory system, seen as a blockade of osmotic-induced release and an increase in basal nuclear peptide content. The data indicate that interruption of the osmotic sensory system affects the central neurosecretory axis, resulting in a backup in content and likely changes in synthesis and processing.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Oxitocina/metabolismo , Sistema Hipófiso-Suprarrenal/fisiología , Tercer Ventrículo/lesiones , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Encefalopatías/metabolismo , Deshidratación/metabolismo , Masculino , Microdisección/métodos , Concentración Osmolar , Presión Osmótica , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Radioinmunoensayo , Ratas , Ratas Wistar , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Tercer Ventrículo/metabolismo , Agua/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...