Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014975

RESUMEN

BACKGROUND AND PURPOSE: New psychoactive substances such as N-ethylpentylone (NEP) are continuously emerging in the illicit drug market, and knowledge of their effects and risks, which may vary between sexes, is scarce. Our present study compares some key effects of NEP in male and female mice. EXPERIMENTAL APPROACH: Psychostimulant, rewarding and reinforcing effects were investigated by tracking locomotor activity, conditioned place preference (CPP) paradigm and through a self-administration (SA) procedure, respectively, in CD1 mice. Moreover, the expression of early genes (C-fos, Arc, Csnk1e, Pdyn, Pp1r1b and Bdnf in addiction-related brain areas) was assessed by qPCR. Finally, serum and brain levels of NEP were determined by UHPLC-MS/MS. KEY RESULTS: NEP-treated males experimented locomotor sensitisation and showed higher and longer increases in locomotion as well as higher hyperthermia after repeated administration than females. Moreover, while preference score in the CPP was similar in both sexes, extinction occurred later, and reinstatement was more easily established for males. Female mice self-administered more NEP than males at a higher dose. Differences in early gene expression (Arc, Bdnf, Csnk1e and Ppp1r1b) were found, but the serum and brain NEP levels did not differ between sexes. CONCLUSION AND IMPLICATIONS: Our results suggest that male mice are more sensitive to NEP psychostimulant and rewarding effects. These differences may be attributed to different early gene expression but not to pharmacokinetic factors. Moreover, males appear to be more vulnerable to the hyperthermic effects of NEP, while females might be more prone to NEP abuse.

2.
Redox Biol ; 75: 103242, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38908073

RESUMEN

Mice models of Alzheimer's disease (APP/PS1) typically experience cognitive decline with age. G6PD overexpressing mice (G6PD-Tg) exhibit better protection from age-associated functional decline including improvements in metabolic and muscle functions as well as reduced frailty compared to their wild-type counterparts. Importantly G6PD-Tg mice show diminished accumulation of DNA oxidation in the brain at different ages in both males and females. To further explore the potential benefits of modulating the G6PD activity in neurodegenerative diseases, triple transgenic mice (3xTg G6PD) were generated, overexpressing APP, PSEN1, and G6PD genes. The cognitive decline characteristic of APP/PS1 mice was prevented in 3xTg G6PD mice, despite similar amyloid-ß (Aß) levels in the hippocampus. This challenges the dominant hypothesis in Alzheimer's disease (AD) etiology and the majority of therapeutic efforts in the field, based on the notion that Aß is pivotal in cognitive preservation. Notably, the antioxidant properties of G6PD led to a decrease in oxidative stress parameters, such as improved GSH/GSSG and GSH/CysSSG ratios, without major changes in oxidative damage markers. Additionally, metabolic changes in 3xTg G6PD mice increased brain energy status, countering the hypometabolism observed in Alzheimer's models. Remarkably, a higher respiratory exchange ratio suggested increased carbohydrate utilization. The relative failures of Aß-targeted clinical trials have raised significant skepticism on the amyloid cascade hypothesis and whether the development of Alzheimer's drugs has followed the correct path. Our findings highlight the significance of targeting glucose-metabolizing enzymes rather than solely focusing on Aß in Alzheimer's research, advocating for a deeper exploration of glucose metabolism's role in cognitive preservation.

3.
Neuropharmacology ; 246: 109838, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38199295

RESUMEN

Social stress exposure heightens the risk of substance abuse disorder development, especially when endured during adolescence, influencing long-term mental health. This study investigates early-life stress's potential to confer resilience against later-life stressors. To investigate this hypothesis, we examined the impact of a single social defeat (SD) incident during adolescent mice's lives on subsequent voluntary ethanol consumption following repeated adult social stress exposure. Half of the adolescent mice experienced SD at postnatal day 28. Three weeks later (postnatal day 49), defeated groups encountered four confrontations with aggressive residents every 72 h, while control groups were exposed to non-resident exploration. A day after the last SD, defeated mice were classified as resilient or susceptible based on their response to a social interaction test (SIT), a model for depressive behavior. To assess ethanol consumption during young adulthood, researchers used the 'drinking in the dark' and oral ethanol self-administration paradigms. Stress inoculation (IS) slightly increased resilient animals in the SIT. In mice without IS exposure during adolescence, susceptible defeated mice displayed higher ethanol consumption and motivation than control and resilient mice. IS in adolescence effectively counteracted this effect, as IS-SD groups, whether resilient or susceptible, showed no increase in ethanol intake. These groups also exhibited similar motivation to control, measured by the progressive ratio. Notably, elevated IL-6 levels seen in SD-S mice were absent in IS-exposed mice. Additionally, IS-exposed groups had lower prefrontal cortex IL-6 and CX3CL1 levels. These findings support the hypothesis that IS, induced by moderate-intensity stress during adolescence, can enhance resilience to more severe stressors in adulthood.


Asunto(s)
Etanol , Interleucina-6 , Ratones , Masculino , Animales , Agresión , Motivación , Interacción Social , Estrés Psicológico/psicología , Consumo de Bebidas Alcohólicas/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...