RESUMEN
Astrocytes are a diverse and morphologically complex class of glial cells restricted to the central nervous system which have been implicated in the modulation of neuronal activity. The cerebellum is involved in planning movements and motor learning. Within the cerebellum three deep cerebellar nuclei (dentate, interposed and fastigial) provide the sole neuronal output. The fastigial nucleus participates in saccadic and vestibular function, and recent evidence disclosed neuronal projections to cognitive, affective, and motor areas. However, thus far there are no reliable descriptions of the distribution and morphological classifications of astrocytes in this nucleus. This work aims to describe the characteristics of astrocytes of the fastigial nucleus based on the expression of GFP in a transgenic mouse model.
RESUMEN
The aqueduct of Sylvius connects the third with the fourth ventricle and is surrounded by the Periaqueductal Grey. Here, we report a novel niche of cells in the dorsal section of the aqueduct, hereby named dorsal aqueduct niche or DAN, by applying a battery of selective markers and transgenic mouse lines. The somata of DAN cells are located toward the lumen of the ventricle forming multiple layers in close association with the cerebrospinal fluid (CSF). A single process emerges from the soma and run with the blood vessels. Cells of the DAN express radial glia/stem cell markers such as GFAP, vimentin and nestin, and the glutamate transporter GLAST or the oligodendrocyte precursor/pericyte marker NG2, thereby suggesting their potential for the generation of new cells. Morphologically, DAN cells resemble tanycytes of the third ventricle, which transfer biochemical signals from the CSF to the central nervous system and display proliferative capacity. The aqueduct ependymal lining can proliferate as observed by the integration of BrdU and expression of Ki67. Thus, the dorsal section of the aqueduct of Sylvius possesses cells that may act a niche of new glial cells in the adult mouse brain.
Asunto(s)
Acueducto del Mesencéfalo , Tercer Ventrículo , Animales , Ratones , Acueducto del Mesencéfalo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Tercer Ventrículo/metabolismo , Neuroglía/metabolismo , Epéndimo/metabolismo , Ratones TransgénicosRESUMEN
Targeted electric signal use for disease diagnostics and treatment is emerging as a healthcare game-changer. Besides arrhythmias, treatment-resistant epilepsy and chronic pain, blindness, and perhaps soon vision loss, could be among the pathologies that benefit from bioelectronic medicine. The electroretinogram (ERG) technique has long demonstrated its role in diagnosing eye diseases and early stages of neurodegenerative diseases. Conspicuously, ERG applications are all based on light-induced responses. However, spontaneous, intrinsic activity also originates in retinal cells. It is a hallmark of degenerated retinas and its alterations accompany obesity and diabetes. To the extent that variables extracted from the resting activity of the retina measured by ERG allow the predictive diagnosis of risk factors for type 2 diabetes. Here, we provided a comparison of the baseline characteristics of intrinsic oscillatory activity recorded by ERGs in mice, rats, and humans, as well as in several rat strains, and explore whether zebrafish exhibit comparable activity. Their pattern was altered in neurodegenerative models including the cuprizone-induced demyelination model in mice as well as in the Royal College of Surgeons (RCS-/-) rats. We also discuss how the study of their properties may pave the way for future research directions and treatment approaches for retinopathies, among others.
RESUMEN
The roof of the fourth ventricle (4V) is located on the ventral part of the cerebellum, a region with abundant vascularization and cell heterogeneity that includes tanycyte-like cells that define a peculiar glial niche known as ventromedial cord. This cord is composed of a group of biciliated cells that run along the midline, contacting the ventricular lumen and the subventricular zone. Although the complex morphology of the glial cells composing the cord resembles to tanycytes, cells which are known for its proliferative capacity, scarce or non-proliferative activity has been evidenced in this area. The subventricular zone of the cerebellum includes astrocytes, oligodendrocytes, and neurons whose function has not been extensively studied. This review describes to some extent the phenotypic, morphological, and functional characteristics of the cells that integrate the roof of the 4V, primarily from rodent brains.
RESUMEN
Cortical dysplasias are alterations in the organization of the layers of the brain cortex due to problems in neuronal migration during development. The neuronal component has been widely studied in experimental models of cortical dysplasias. In contrast, little is known about how glia are affected. In the cerebellum, Bergmann glia (BG) are essential for neuronal migration during development, and in adult they mediate the control of fine movements through glutamatergic transmission. The aim of this study was to characterize the morphology and intracellular calcium dynamics of BG and astrocytes from mouse cerebellum and their modifications in a model of cortical dysplasia induced by carmustine (BCNU). Carmustine-treated mice were affected in their motor coordination and balance. Cerebellar dysplasias and heterotopias were more frequently found in lobule X. Morphology of BG cells and astrocytes was affected, as were their spontaneous [Ca2+]i transients in slice preparation and in vitro.