Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35630802

RESUMEN

Spodoptera frugiperda (S. frugiperda) remains a global primary pest of maize. Therefore, new options to combat this pest are necessary. In this study, the insecticidal activity of three crude foliar extracts (ethanol, dichloromethane, and hexane) and their main secondary metabolites (quercetin and chlorogenic acid) of the species Solidago graminifolia (S. graminifolia) by ingestion bioassays against S. frugiperda larvae was analyzed. Additionally, the extracts were phytochemically elucidated by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. Finally, an in silico study of the potential interaction of quercetin on S. frugiperda acetylcholinesterase was performed. Organic extracts were obtained in the range from 5 to 33%. The ethanolic extract caused higher mortality (81%) with a half-maximal lethal concentration (LC50) of 0.496 mg/mL. Flavonoid secondary metabolites such as hyperoside, quercetin, isoquercetin, kaempferol, and avicularin and some phenolic acids such as chlorogenic acid, solidagoic acid, gallic acid, hexoside, and rosmarinic acid were identified. In particular, quercetin had an LC50 of 0.157 mg/mL, and chlorogenic acid did not have insecticidal activity but showed an antagonistic effect on quercetin. The molecular docking analysis of quercetin on the active site of S. frugiperda acetylcholinesterase showed a -5.4 kcal/mol binding energy value, lower than acetylcholine and chlorpyrifos (-4.45 and -4.46 kcal/mol, respectively). Additionally, the interactions profile showed that quercetin had π-π interactions with amino acids W198, Y235, and H553 on the active site.


Asunto(s)
Asteraceae , Insecticidas , Solidago , Acetilcolinesterasa , Animales , Ácido Clorogénico/farmacología , Cromatografía Liquida , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Spodoptera , Espectrometría de Masas en Tándem
2.
J Fungi (Basel) ; 7(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34436122

RESUMEN

Beauveria bassiana is an entomopathogenic fungus that is used for the biological control of different agricultural pest insects. B. bassiana is traditionally cultivated in submerged fermentation and solid-state fermentation systems to obtain secondary metabolites with antifungal activity and infective spores. This work presents the design and characterization of a new laboratory-scale biofilm bioreactor for the simultaneous production of oosporein and aerial conidia by B. bassiana PQ2. The reactor was built with materials available in a conventional laboratory. KLa was determined at different air flows (1.5-2.5 L/min) by two different methods in the liquid phase and in the exhaust gases. The obtained values showed that an air flow of 2.5 L/min is sufficient to ensure adequate aeration to produce aerial conidia and secondary metabolites by B. bassiana. Under the conditions studied, a concentration of 183 mg oosporein per liter and 1.24 × 109 spores per gram of support was obtained at 168 h of culture. These results indicate that the biofilm bioreactor represents a viable alternative for the production of products for biological control from B. bassiana.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...