Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(5): e0016224, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38606973

RESUMEN

Acinetobacter junii is an opportunistic human and animal pathogen severely understudied. Here, we conducted the largest genomic epidemiological study on this pathogen to date. Our data show that this bacterium has spread globally. Also, we found that some human and non-human isolates are not well differentiated from one another, implying transmission between clinical and non-clinical, non-human settings. Remarkably, human but also some non-human isolates have clinically important antibiotic resistance genes, and some of these genes are located in plasmids. Given these results, we put forward that A. junii should be considered an emerging One Health problem. In this regard, future molecular epidemiological studies about this species will go beyond human isolates and will consider animal-, plant-, and water-associated environments. IMPORTANCE: Acinetobacter baumannii is the most well-known species from the genus Acinetobacter. However, other much less studied Acinetobacter species could be important opportunistic pathogens of animals, plants and humans. Here, we conducted the largest genomic epidemiological study of A. junii, which has been described as a source not only of human but also of animal infections. Our analyses show that this bacterium has spread globally and that, in some instances, human and non-human isolates are not well differentiated. Remarkably, some non-human isolates have important antibiotic resistance genes against important antibiotics used in human medicine. Based on our results, we propose that this pathogen must be considered an issue not only for humans but also for veterinary medicine.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/epidemiología , Humanos , Acinetobacter/genética , Acinetobacter/efectos de los fármacos , Acinetobacter/clasificación , Acinetobacter/aislamiento & purificación , Acinetobacter/patogenicidad , Animales , Salud Única , Genoma Bacteriano , Antibacterianos/farmacología , Epidemiología Molecular , Enfermedades Transmisibles Emergentes/microbiología , Enfermedades Transmisibles Emergentes/epidemiología , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Genómica
2.
Microb Pathog ; 176: 106005, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36717005

RESUMEN

The Gram-negative bacteria Brucella abortus is a major cause of brucellosis in animals and humans. The host innate immune response to B. abortus is mainly associated with phagocytic cells such as dendritic cells, neutrophils, and macrophages. However, as mast cells naturally reside in the main bacterial entry sites they may be involved in bacterial recognition. At present, little is known about the role of mast cells during B. abortus infection. The role of the innate immune receptors TLR2 and TLR4 in activation of mast cells by B. abortus (strain RB51) infection was analyzed in this study. The results showed that B. abortus did not induce mast cell degranulation, but did induce the synthesis of the cytokines IL-1ß, IL-6, TNF-α, CCL3, CCL4, and CCL5. Furthermore, B. abortus stimulated key cell signaling molecules involved in mast cell activation such as p38 and NF-κB. Blockade of the receptors TLR2 and TLR4 decreased TNF-α and IL-6 release by mast cells in response to B. abortus. Taken together, our results demonstrate that mast cells are activated by B. abortus and may play a role in inducing an inflammatory response during the initial phase of the infection.


Asunto(s)
Brucella abortus , Brucelosis , Humanos , Animales , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Mastocitos , Factor de Necrosis Tumoral alfa , Interleucina-6
3.
Sci Rep ; 12(1): 15685, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127495

RESUMEN

Mast cells (MC) play a central role in the early containment of bacterial infections, such as that caused by Listeria monocytogenes (L.m). The mechanisms of MC activation induced by L.m infection are well known, so it is possible to evaluate whether they are susceptible to targeting and modulation by different drugs. Recent evidence indicates that valproic acid (VPA) inhibits the immune response which favors L.m pathogenesis in vivo. Herein, we examined the immunomodulatory effect of VPA on L.m-mediated MC activation. To this end, bone marrow-derived mast cells (BMMC) were pre-incubated with VPA and then stimulated with L.m. We found that VPA reduced MC degranulation and cytokine release induced by L.m. MC activation during L.m infection relies on Toll-Like Receptor 2 (TLR2) engagement, however VPA treatment did not affect MC TLR2 cell surface expression. Moreover, VPA was able to decrease MC activation by the classic TLR2 ligands, peptidoglycan and lipopeptide Pam3CSK4. VPA also reduced cytokine production in response to Listeriolysin O (LLO), which activates MC by a TLR2-independent mechanism. In addition, VPA decreased the activation of critical events on MC signaling cascades, such as the increase on intracellular Ca2+ and phosphorylation of p38, ERK1/2 and -p65 subunit of NF-κB. Altogether, our data demonstrate that VPA affects key cell signaling events that regulate MC activation following L.m infection. These results indicate that VPA can modulate the functional activity of different immune cells that participate in the control of L.m infection.


Asunto(s)
Listeria monocytogenes , Listeriosis , Citocinas/metabolismo , Humanos , Lipopéptidos/metabolismo , Listeriosis/tratamiento farmacológico , Listeriosis/metabolismo , Mastocitos/metabolismo , FN-kappa B/metabolismo , Peptidoglicano/metabolismo , Receptor Toll-Like 2/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacología
4.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057753

RESUMEN

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Asunto(s)
COVID-19/diagnóstico , Carboxipeptidasas A/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/diagnóstico , Mastocitos/inmunología , SARS-CoV-2/aislamiento & purificación , Serotonina/metabolismo , Biomarcadores/análisis , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/virología , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mastocitos/patología , Índice de Severidad de la Enfermedad
5.
Front Immunol ; 9: 1161, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29892297

RESUMEN

Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.


Asunto(s)
Proteínas Bacterianas/inmunología , Catalasa/inmunología , Trampas Extracelulares/inmunología , Inmunidad Innata , Mastocitos/inmunología , Mycobacterium tuberculosis/inmunología , Animales , Proteínas Bacterianas/metabolismo , Catalasa/metabolismo , Línea Celular , Trampas Extracelulares/metabolismo , Humanos , Mastocitos/enzimología , Ratones , Mycobacterium tuberculosis/enzimología , Triptasas/inmunología , Triptasas/metabolismo , Tuberculosis/enzimología , Tuberculosis/inmunología , Tuberculosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA