Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros













Intervalo de año de publicación
1.
Front Neuroanat ; 18: 1331666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440067

RESUMEN

This paper reviews the importance of Cajal's neuronal theory (the Neuron Doctrine) and the origin and importance of the idea of brain plasticity that emerges from this theory. We first comment on the main Cajal's discoveries that gave rise and confirmed his Neuron Doctrine: the improvement of staining techniques, his approach to morphological laws, the concepts of dynamic polarisation, neurogenesis and neurotrophic theory, his first discoveries of the nerve cell as an independent cell, his research on degeneration and regeneration and his fight against reticularism. Second, we review Cajal's ideas on brain plasticity and the years in which they were published, to finally focus on the debate on the origin of the term plasticity and its conceptual meaning, and the originality of Cajal's proposal compared to those of other authors of the time.

2.
Neuroscientist ; : 10738584241236773, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497585

RESUMEN

Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.

3.
iScience ; 26(6): 106868, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260747

RESUMEN

Alzheimer's disease (AD) is characterized by memory impairments and age-dependent synapse loss. Experimental and clinical studies have shown decreased expression of the glutamatergic protein Neuroligin-1 (Nlgn1) in AD. However, the consequences of a sustained reduction of Nlgn1 are unknown. Here, we generated a knockin mouse that reproduces the NLGN1 Thr271fs mutation, identified in heterozygosis in a familial case of AD. We found that Nlgn1 Thr271fs mutation abolishes Nlgn1 expression in mouse brain. Importantly, heterozygous Nlgn1 Thr271fs mice showed delay-dependent amnesia for recognition memory. Electrophysiological recordings uncovered age-dependent impairments in basal synaptic transmission and long-term potentiation (LTP) in CA1 hippocampal neurons of heterozygous Nlgn1 Thr271fs mice. In contrast, homozygous Nlgn1 Thr271fs mice showed impaired fear-conditioning memory and normal basal synaptic transmission, suggesting unshared mechanisms for a partial or total loss of Nlgn1. These data suggest that decreased Nlgn1 may contribute to the synaptic and memory deficits in AD.

4.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37169859

RESUMEN

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Asunto(s)
Arginasa , Microglía , Animales , Femenino , Ratones , Arginasa/genética , Arginasa/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo
5.
Trends Neurosci ; 46(7): 566-580, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202300

RESUMEN

Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity. Although GABAergic inhibition has classically been implicated in closing windows of plasticity, astrocytes and adenosinergic inhibition have also emerged more recently as key determinants of the duration of these periods of plasticity. Here, we review novel aspects of the involvement of GABAergic inhibition, the possible role of presynaptic NMDARs, and the emerging roles of astrocytes and adenosinergic inhibition in determining the duration of windows of plasticity in different brain regions.


Asunto(s)
Astrocitos , Plasticidad Neuronal , Adulto , Humanos , Astrocitos/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Encéfalo/fisiología
6.
Mol Psychiatry ; 28(6): 2177-2188, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36991134

RESUMEN

In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.


Asunto(s)
Encéfalo , Neuronas , Animales , Humanos , Encéfalo/fisiología , Neuronas/fisiología , Plasticidad Neuronal/fisiología , Periodicidad , Potenciales de Acción/fisiología , Neuroglía , Modelos Neurológicos , Mamíferos
7.
Transl Neurodegener ; 12(1): 6, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740709

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. METHODS: Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20-80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-ß (Aß) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). RESULTS: Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aß42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aß plaque load. CONCLUSIONS: We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Galectina 3/genética , Galectina 3/uso terapéutico , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Placa Amiloide
8.
Neuroscientist ; 29(5): 532-537, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36245418

RESUMEN

Windows of plasticity are fundamental for the correct formation of definitive brain circuits; these periods drive sensory and motor learning during development and ultimately learning and memory in adults. However, establishing windows of plasticity also imposes limitations on the central nervous system in terms of its capacity to recover from injury. Recent evidence highlights the important role that astrocytes and adenosine seem to play in controlling the duration of these critical periods of plasticity.


Asunto(s)
Adenosina , Astrocitos , Humanos , Adulto , Plasticidad Neuronal/fisiología , Sistema Nervioso Central , Aprendizaje
10.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35887155

RESUMEN

Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors that exhibit enormous diversity in their expression patterns, sequence homology, pharmacology, biophysical properties and signaling pathways in the brain. In general, mGluRs modulate different traits of neuronal physiology, including excitability and plasticity processes. Particularly, group I mGluRs located at the pre- or postsynaptic compartments are involved in spike timing-dependent plasticity (STDP) at hippocampal and neocortical synapses. Their roles of participating in the underlying mechanisms for detection of activity coincidence in STDP induction are debated, and diverse findings support models involving mGluRs in STDP forms in which NMDARs do not operate as classical postsynaptic coincidence detectors. Here, we briefly review the involvement of group I mGluRs in STDP and their possible role as coincidence detectors.


Asunto(s)
Receptores de Glutamato Metabotrópico , Sinapsis , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
11.
Cell Reprogram ; 24(5): 294-303, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802497

RESUMEN

Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) syndrome is mainly caused by the m.3243A>G mutation in the mt-tRNALeu(UUR) (MT-TL1) gene. Owing to the lack of proper animal models, several cellular models have been developed to study the disease, providing insight in the pathophysiological mechanisms of MELAS. In this study, we show a successful direct conversion of MELAS patient-derived fibroblasts into induced neurons (iNs) for the first time, as well as an electrophysiological characterization of iNs cocultured with astrocytes. In addition, we performed bioenergetics analysis to study the consequences of m.3243A>G mutation in this neuronal model of MELAS syndrome.


Asunto(s)
Acidosis Láctica , Síndrome MELAS , Accidente Cerebrovascular , Acidosis Láctica/genética , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/genética , Mutación , Neuronas , Accidente Cerebrovascular/genética
12.
J Neurosci ; 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35768208

RESUMEN

During development, critical periods of synaptic plasticity facilitate the reordering and refinement of neural connections, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex (S1) exhibit a presynaptic form of spike timing-dependent long-term depression (t-LTD) that probably fulfills a role in synaptic refinement. This t-LTD persists until the 4rd postnatal week in mice, disappearing thereafter. When we investigated the mechanisms underlying this maturation-related loss of t-LTD in either sex mouse slices, we found that it could be completely recovered by antagonizing adenosine type 1 receptors (A1R). By contrast, an agonist of A1R impeded the induction of t-LTD at P13-27. Furthermore, we found that the adenosine that mediated the loss of t-LTD at the end of the 4th week of development is most probably supplied by astrocytes. At more mature stages (P38-60), we found that the protocol used to induce t-LTD provokes t-LTP. We characterized the mechanisms underlying the induction of this form of LTP and we found it to be expressed presynaptically, as witnessed by paired-pulse and coefficient of variation analysis. In addition, this form of presynaptic t-LTP requires the activation of NMDARs and mGlu1Rs, and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels. Nitric oxide is also required for t-LTP as a messenger in the postsynaptic neuron, as are the adenosine and glutamate that are released in association with astrocyte signaling. These results provide direct evidence of the mechanisms that close the window of plasticity associated with t-LTD and that drive the switch in synaptic transmission from t-LTD to t-LTP at L4-L2/3 synapses, in which astrocytes play a central role.SIGNIFICANCE STATEMENTDuring development, critical periods of plasticity facilitate the reordering and refining of neural connections, allowing correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex exhibit a presynaptic form plasticity (long-term depression -LTD) that probably fulfills a role in synaptic refinement. It is present until the 4rd postnatal week in mice, disappearing thereafter. The mechanisms that are responsible for this loss of plasticity are not clear. We describe here these mechanisms and those involved in the switch from LTD to LTP observed as the brain matures. Defining these events responsible for closing (and opening) plasticity windows may be important for brain repair, sensorial recovery, the treatment of neurodevelopmental disorders and for educational policy.

13.
Neurobiol Dis ; 165: 105649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122944

RESUMEN

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Asunto(s)
Distrofias Neuroaxonales , Enfermedades Neurodegenerativas , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Enfermedades Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacología
14.
FEBS J ; 289(17): 5074-5088, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34143566

RESUMEN

Kainate receptors (KARs) are glutamate receptors that participate in the postsynaptic transmission of information and in the control of neuronal excitability, as well as presynaptically modulating the release of the neurotransmitters GABA and glutamate. These modulatory effects, general follow a biphasic pattern, with low KA concentrations provoking an increase in GABA and glutamate release, and higher concentrations mediating a decrease in the release of these neurotransmitters. In addition, KARs are involved in different forms of long- and short-term plasticity. Importantly, altered activity of these receptors has been implicated in different central nervous system diseases and disturbances. Here, we describe the pre- and postsynaptic actions of KARs, and the possible role of these receptors in disease, a field that has seen significant progress in recent years.


Asunto(s)
Ácido Glutámico , Receptores de Ácido Kaínico , Neuronas/metabolismo , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico
15.
J Chem Neuroanat ; 119: 102054, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839003

RESUMEN

Glutamate is the most abundant excitatory neurotransmitter in the hippocampus where mediates its actions by activating glutamate receptors. The activation of these receptors is essential for the maintenance and dynamics of dendritic spines and plasticity that correlate with learning and memory processes during neurodevelopment and adulthood. We studied in adults the effect of blocking ionotropic glutamate receptors (NMDAR, AMPAR, and KAR) functions at neonatal age (PD1-PD15) with their respective antagonists D-AP5, GYKI-53655 and UBP-302. We first evaluated memory using a new object recognition test in adults. Second, we evaluated the levels of glial fibrillary acidic protein, synaptophysin and actin with immunohistochemistry in the CA1, CA3, and dentate gyrus regions of the hippocampus and, finally, the number of dendritic spines and their dynamics using Golgi-Cox staining. We found that ionotropic glutamate receptor function blockade at neonatal age causes a reduction in short and long-term memory in adulthood and a reduction in the expression of synaptophysin and actin protein levels in the hippocampus regions studied. This blockade also reduced the number of dendritic spines and modified dendritic dynamics in the CA1 region. The antagonism of the three types of ionotropic glutamate receptors reduced the mushrooms and bifurcated types of spines and increased the thin spines. The number of stubby spines was reduced by D-AP5, increased by UPB-302, and not affected by GYKI-53655. Our results indicate that the blockade of neonatal ionotropic glutamate receptors produces alterations that persist until adulthood.


Asunto(s)
Espinas Dendríticas , Receptores Ionotrópicos de Glutamato , Animales , Cognición , Hipocampo/metabolismo , Memoria , Ratas , Receptores Ionotrópicos de Glutamato/metabolismo
16.
Neuropharmacology ; 198: 108743, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34363811

RESUMEN

In 1981 Jeff Watkins and Dick Evans wrote what was to become a seminal review on excitatory amino acids (EAAs) and their receptors (Watkins and Evans, 1981). Bringing together various lines of evidence dating back over several decades on: the distribution in the nervous system of putative amino acid neurotransmitters; enzymes involved in their production and metabolism; the uptake and release of amino acids; binding of EAAs to membranes; the pharmacological action of endogenous excitatory amino acids and their synthetic analogues, and notably the actions of antagonists for the excitations caused by both nerve stimulation and exogenous agonists, often using pharmacological tools developed by Jeff and his colleagues, they provided a compelling account for EAAs, especially l-glutamate, as a bona fide neurotransmitter in the nervous system. The rest, as they say, is history, but far from being consigned to history, EAA research is in rude health well into the 21st Century as this series of Special Issues of Neuropharmacology exemplifies. With EAAs and their receptors flourishing across a wide range of disciplines and clinical conditions, we enter into a dialogue with two of the most prominent and influential figures in the early days of EAA research: Jeff Watkins and Dick Evans.


Asunto(s)
Aminoácidos Excitadores/fisiología , Neurotransmisores/fisiología , Receptores de Glutamato/fisiología , Animales , Aminoácidos Excitadores/farmacología , Humanos , Receptores de Glutamato/efectos de los fármacos , Sinapsis/fisiología
17.
Neuropharmacology ; 197: 108696, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274351

RESUMEN

Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field. This article is part of the special Issue on 'Glutamate Receptors - Kainate receptors'.


Asunto(s)
Ácido Glutámico/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Humanos , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
18.
Front Mol Neurosci ; 14: 696476, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220451

RESUMEN

Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer's disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics. Currently under debate, the named amyloid hypothesis points to amyloid-beta peptide 1-42 (Aß42) as the trigger of the functional deviations underlying cognitive impairment in AD. However, there are missing functional mechanistic data that comprehensively dissect the early subtle changes that lead to synaptic dysfunction and subsequent neuronal network collapse in AD. The convergence of the study of both, mechanisms underlying brain plasticity, and neuronal network dynamics, may represent the most efficient approach to address the early triggering and aberrant mechanisms underlying the progressive clinical cognitive impairment in AD. Here we comment on the emerging integrative roles of brain plasticity and network oscillations in AD research and on the future perspectives of research in this field.

19.
J Neurochem ; 158(5): 1083-1093, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34293825

RESUMEN

Kainate (KA) receptors (KARs) are important modulators of synaptic transmission. We studied here the role of KARs on glutamatergic synaptic transmission in the CA2 region of the hippocampus where the actions of these receptors are unknown. We observed that KA depresses glutamatergic synaptic transmission at Schaffer collateral-CA2 synapses; an effect that was antagonized by NBQX (a KA/AMPA receptors antagonist) under condition where AMPA receptors were previously blocked. The study of paired-pulse facilitation ratio, miniature responses, and fluctuation analysis indicated a presynaptic locus of action for KAR. Additionally, we determined the action mechanism for this depression of glutamate release mediated by the activation of KARs. We found that inhibition of protein kinase A suppressed the effect of KAR activation on evoked excitatory post-synaptic current, an effect that was not suppressed by protein kinase C inhibitors. Furthermore, in the presence of Pertussis toxin, the depression of glutamate release mediated by KAR activation was not present, invoking the participation of a Gi/o protein in this modulation. Finally, the KAR-mediated depression of glutamate release was not suppressed by treatments that affect calcium entry trough voltage-dependent calcium channels or calcium release from intracellular stores. We conclude that KARs present at these synapses mediate a depression of glutamate release through a mechanism that involves the activation of G protein and protein kinase A.


Asunto(s)
Región CA2 Hipocampal/metabolismo , Ácido Glutámico/metabolismo , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/metabolismo , Transmisión Sináptica/fisiología , Animales , Región CA2 Hipocampal/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Transmisión Sináptica/efectos de los fármacos
20.
Mol Psychiatry ; 26(9): 4784-4794, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32555421

RESUMEN

It is known that continuous abuse of amphetamine (AMPH) results in alterations in neuronal structure and cognitive behaviors related to the reward system. However, the impact of AMPH abuse on the hippocampus remains unknown. The aim of this study was to determine the damage caused by AMPH in the hippocampus in an addiction model. We reproduced the AMPH sensitization model proposed by Robinson et al. in 1997 and performed the novel object recognition test (NORt) to evaluate learning and memory behaviors. After the NORt, we performed Golgi-Cox staining, a stereological cell count, immunohistochemistry to determine the presence of GFAP, CASP3, and MT-III, and evaluated oxidative stress in the hippocampus. We found that AMPH treatment generates impairment in short- and long-term memories and a decrease in neuronal density in the CA1 region of the hippocampus. The morphological test showed an increase in the total dendritic length, but a decrease in the number of mature spines in the CA1 region. GFAP labeling increased in the CA1 region and MT-III increased in the CA1 and CA3 regions. Finally, we found a decrease in Zn concentration in the hippocampus after AMPH treatment. An increase in the dopaminergic tone caused by AMPH sensitization generates oxidative stress, neuronal death, and morphological changes in the hippocampus that affect cognitive behaviors like short- and long-term memories.


Asunto(s)
Anfetamina , Metalotioneína 3 , Anfetamina/farmacología , Hipocampo , Aprendizaje , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA