RESUMEN
BACKGROUND AND OBJECTIVES: Immune-mediated necrotizing myopathy (IMNM) caused by antibodies against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an inflammatory myopathy that has been epidemiologically correlated with previous statin exposure. We characterized in detail a series of 11 young statin-naïve patients experiencing a chronic disease course mimicking a limb-girdle muscular dystrophy. With the hypothesis that HMGCR upregulation may increase immunogenicity and trigger the production of autoantibodies, our aim was to expand pathophysiologic knowledge of this distinct phenotype. METHODS: Clinical and epidemiologic data, autoantibody titers, creatine kinase (CK) levels, response to treatment, muscle imaging, and muscle biopsies were assessed. HMGCR expression in patients' muscle was assessed by incubating sections of affected patients with purified anti-HMGCR+ serum. Whole-exome sequencing (WES) with a special focus on cholesterol biosynthesis-related genes and high-resolution human leukocyte antigen (HLA) typing were performed. RESULTS: Patients, aged 3-25 years and mostly female (90.9%), presented with subacute proximal weakness progressing over many years and high CK levels (>1,000 U/L). Diagnostic delay ranged from 3 to 27 years. WES did not reveal any pathogenic variants. HLA-DRB1*11:01 carrier frequency was 60%, a significantly higher proportion than in the control population. No upregulation or mislocalization of the enzyme in statin-exposed or statin-naïve anti-HMGCR+ patients was observed, compared with controls. DISCUSSION: WES of a cohort of patients with dystrophy-like anti-HMGCR IMNM did not reveal any common rare variants of any gene, including cholesterol biosynthesis-related genes. HLA analysis showed a strong association with HLA-DRB1*11:01, previously mostly described in statin-exposed adult patients; consequently, a common immunogenic predisposition should be suspected, irrespective of statin exposure. Moreover, we were unable to conclusively demonstrate muscle upregulation/mislocalization of HMGCR in IMNM, whether or not driven by statins.
Asunto(s)
Cadenas HLA-DRB1 , Hidroximetilglutaril-CoA Reductasas , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Hidroximetilglutaril-CoA Reductasas/inmunología , Femenino , Masculino , Adulto , Cadenas HLA-DRB1/genética , Adulto Joven , Niño , Adolescente , Preescolar , Mutación , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Necrosis , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Miositis/inmunología , Miositis/genéticaRESUMEN
BACKGROUND AND OBJECTIVE: Between 5% and 10% of amyotrophic lateral sclerosis (ALS) cases have a family history of the disease, 30% of which do not have an identifiable underlying genetic cause after a comprehensive study of the known ALS-related genes. Based on a significantly increased incidence of ALS in a small geographical region from Spain, the aim of this work was to identify novel ALS-related genes in ALS cases with negative genetic testing. METHODS: We detected an increased incidence of both sporadic and, especially, familial ALS cases in a small region from Spain compared with available demographic and epidemiological data. We performed whole genome sequencing in a group of 12 patients with ALS (5 of them familial) from this unique area. We expanded the study to include affected family members and additional cases from a wider surrounding region. RESULTS: We identified a shared missense mutation (c.1586C>T; p.Pro529Leu) in the cyclic AMP regulated phosphoprotein 21 (ARPP21) gene that encodes an RNA-binding protein, in a total of 10 patients with ALS from 7 unrelated families. No mutations were found in other ALS-causing genes. CONCLUSIONS: While previous studies have dismissed a causal role of ARPP21 in ALS, our results strongly support ARPP21 as a novel ALS-causing gene.
RESUMEN
OBJECTIVE: COASY, the gene encoding the bifunctional enzyme CoA synthase, which catalyzes the last two reactions of cellular de novo coenzyme A (CoA) biosynthesis, has been linked to two exceedingly rare autosomal recessive disorders, such as COASY protein-associated neurodegeneration (CoPAN), a form of neurodegeneration with brain iron accumulation (NBIA), and pontocerebellar hypoplasia type 12 (PCH12). We aimed to expand the phenotypic spectrum and gain insights into the pathogenesis of COASY-related disorders. METHODS: Patients were identified through targeted or exome sequencing. To unravel the molecular mechanisms of disease, RNA sequencing, bioenergetic analysis, and quantification of critical proteins were performed on fibroblasts. RESULTS: We identified five new individuals harboring novel COASY variants. While one case exhibited classical CoPAN features, the others displayed atypical symptoms such as deafness, language and autism spectrum disorders, brain atrophy, and microcephaly. All patients experienced epilepsy, highlighting its potential frequency in COASY-related disorders. Fibroblast transcriptomic profiling unveiled dysregulated expression in genes associated with mitochondrial respiration, responses to oxidative stress, transmembrane transport, various cellular signaling pathways, and protein translation, modification, and trafficking. Bioenergetic analysis revealed impaired mitochondrial oxygen consumption in COASY fibroblasts. Despite comparable total CoA levels to control cells, the amounts of mitochondrial 4'-phosphopantetheinylated proteins were significantly reduced in COASY patients. INTERPRETATION: These results not only extend the clinical phenotype associated with COASY variants but also suggest a continuum between CoPAN and PCH12. The intricate interplay of altered cellular processes and signaling pathways provides valuable insights for further research into the pathogenesis of COASY-associated diseases.
Asunto(s)
Fenotipo , Transcriptoma , Humanos , Masculino , Femenino , Niño , Preescolar , Epilepsia/genética , Fibroblastos/metabolismo , Adolescente , Trastorno del Espectro Autista/genética , Adulto , TransferasasRESUMEN
Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disease caused by biallelic variants in the SLC2A10 gene (NG_016284.1) and characterised by tortuosity and elongation of the aorta and medium-sized arteries. It is considered an extremely rare disease; only 106 individuals with genetically confirmed ATS have been identified to date. Four cases of ATS from two families are described, contributing to the clinical delineation of this condition. A patient with microcephaly and a complex uropathy and two cases with diaphragmatic hernia are noticed. Regarding the vascular involvement, a predominant supra-aortic involvement stands out and only 1 patient with significant arterial stenoses was described. All presented severe tortuosity of the intracranial arteries. To reduce hemodynamic stress on the arterial wall, beta-adrenergic blocking treatment was prescribed. A not previously described variant (NM_030777.4:c.899T>G (p.Leu300Trp)) was detected in a proband; it has an allegedly deleterious effect in compound heterozygous state with the pathogenic variant c.417T>A (p.Tyr139Ter). The other 3 patients, siblings born to healthy consanguineous parents, had a variant in homozygous state: c.510G>A (p.Trp170Ter).
Asunto(s)
Arterias , Enfermedades Cutáneas Genéticas , Humanos , Enfermedades Cutáneas Genéticas/genética , Aorta , ConsanguinidadRESUMEN
We report a 6-year-old female with linear skin hyperpigmentation on the axillae and groin, intellectual disability, dysplastic teeth and nails, and facial dysmorphism who was diagnosed with a novel PHF6 pathogenic splicing variant. Males with PHF6 mutations have been associated with the X-linked recessive disorder Börjeson-Forssman-Lehmann, but females have a distinct phenotype which is likely modulated by X-inactivation.
Asunto(s)
Epilepsia , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Portadoras/genética , Niño , Cara , Femenino , Dedos , Trastornos del Crecimiento , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Mosaicismo , Proteínas RepresorasRESUMEN
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
RESUMEN
We present the clinical and neuropathological findings of a patient with early onset Alzheimer's dementia (AD), heterozygous carrier of the rare Apolipoprotein E Christchurch (APOEch) variant. The patient did not harbor any pathogenic mutation in known Mendelian genes related to AD or other neurodegenerative disorders. A sibling of this patient, also carrying the APOEch variant, developed AD at the age of 66 years old. Our data suggest a possible deleterious effect of this variant, which contrast with the protective role that has been previously shown in a subject homozygous for the APOEch with he Paisa PSEN1 mutation.
Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteínas E/genética , Anciano , Encéfalo/patología , Heterocigoto , Humanos , Masculino , Mutación , LinajeRESUMEN
BACKGROUND: About 40% of RAS/BRAF wild-type metastatic colorectal cancer (mCRC) patients undergoing anti-EGFR-based therapy have poor outcomes. Treatment failure is not only associated with poorer prognosis but higher healthcare costs. Our aim was to identify novel somatic genetic variants in the primary tumor and assess their effect on anti-EGFR response. PATIENTS AND METHODS: Tumor (somatic) and blood (germline) DNA samples were obtained from two well-defined cohorts of mCRC patients, those sensitive and those resistant to EGFR blockade. Genetic variant screening of 43 EGFR-related genes was performed using targeted next-generation sequencing (NGS). Relevant clinical data were collected through chart review to assess genetic results. RESULTS: Among 61 patients, 38 were sensitive and 23 were resistant to treatment. We identified eight somatic variants that predicted non-response. Three were located in insulin-related genes (I668N and E1218K in IGF1R, T1156M in IRS2) and three in genes belonging to the LRIG family (T152T in LRIG1, S697L in LRIG2 and V812M in LRIG3). The remaining two variants were found in NRAS (G115Efs*46) and PDGFRA (T301T). We did not identify any somatic variants related to good response. CONCLUSIONS: This study provides evidence that novel somatic genetic variants along the EGFR-triggered pathway could modulate the response to anti-EGFR drugs in mCRC patients. It also highlights the influence of insulin-related genes and LRIG genes on anti-EGFR efficacy. Our findings could help characterize patients who are resistant to anti-EGFR blockade despite harboring RAS/BRAF wild-type tumors.
RESUMEN
Early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD) have a high proportion of genetically determined cases. Next-generation sequencing technologies have triggered the discovery of new mutations and genetic variants in dementia-causal genes. We performed whole-exome sequencing and selective analysis of known genes causative of EOAD and FTD in a well-characterized Spanish cohort of 103 patients (60 EOAD, 43 FTD) to find genetic variants associated to patients' phenotype. In EOAD patients, a new likely pathogenic variant in PSEN1 gene (p.G378R) was found. In FTD patients, 2 likely pathogenic variants were found, one in MAPT gene (p.P397S) and one in VCP gene (p.R159H). In our series, 2% of early-onset dementia without criteria for clinical genetic testing according to current guidelines presented a likely pathogenic mutation. We have also detected 13 additional variants of uncertain significance in causal genes, as well as rare variants in risk genes for dementia (ABCA7, SORL1, SQSTM1, and TREM2). Next-generation technologies in neurodegenerative diseases constitute a powerful tool that significantly contributes to patients' diagnosis.
Asunto(s)
Enfermedad de Alzheimer/genética , Estudios de Asociación Genética/métodos , Variación Genética , Mutación , Presenilina-1/genética , Proteína que Contiene Valosina/genética , Transportadoras de Casetes de Unión a ATP/genética , Femenino , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Persona de Mediana Edad , Receptores Inmunológicos/genética , Estudios Retrospectivos , Riesgo , Factores de Riesgo , Proteína Sequestosoma-1/genética , España , Secuenciación del ExomaRESUMEN
PURPOSE: Patients with Fanconi anaemia (FA), a rare DNA repair genetic disease, exhibit chromosome fragility, bone marrow failure, malformations and cancer susceptibility. FA molecular diagnosis is challenging since FA is caused by point mutations and large deletions in 22 genes following three heritability patterns. To optimise FA patients' characterisation, we developed a simplified but effective methodology based on whole exome sequencing (WES) and functional studies. METHODS: 68 patients with FA were analysed by commercial WES services. Copy number variations were evaluated by sequencing data analysis with RStudio. To test FANCA missense variants, wt FANCA cDNA was cloned and variants were introduced by site-directed mutagenesis. Vectors were then tested for their ability to complement DNA repair defects of a FANCA-KO human cell line generated by TALEN technologies. RESULTS: We identified 93.3% of mutated alleles including large deletions. We determined the pathogenicity of three FANCA missense variants and demonstrated that two FANCA variants reported in mutations databases as 'affecting functions' are SNPs. Deep analysis of sequencing data revealed patients' true mutations, highlighting the importance of functional analysis. In one patient, no pathogenic variant could be identified in any of the 22 known FA genes, and in seven patients, only one deleterious variant could be identified (three patients each with FANCA and FANCD2 and one patient with FANCE mutations) CONCLUSION: WES and proper bioinformatics analysis are sufficient to effectively characterise patients with FA regardless of the rarity of their complementation group, type of mutations, mosaic condition and DNA source.
Asunto(s)
Secuenciación del Exoma , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/patología , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
PRMT7 encodes for an arginine methyltransferase that methylates arginine residues on various protein substrates and has been shown to play a role in various developmental processes. Mutations in PRMT7 have been recently shown to be implicated in a phenotype with intellectual disability, short stature and brachydactyly, and considered to be a phenocopy of pseudohypoparathyroidism. We report a patient with short stature, psychomotor delay, hearing loss and brachydactyly, for whom whole exome sequencing detected two mutations in PRMT7 and parental segregation studies detected biallelic mutation inheritance. Few patients with biallelic PRMT7 mutations have been reported so far in the literature. We report a new patient and review all reported cases to date to delineate the clinical manifestations that may help in diagnosis this disorder, known as Short Stature, Brachydactyly, Intellectual Developmental Disability, and Seizures syndrome, allowing appropriate management and genetic counselling.
Asunto(s)
Braquidactilia/genética , Enanismo/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , Fenotipo , Proteína-Arginina N-Metiltransferasas/genética , Braquidactilia/patología , Enanismo/patología , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , SíndromeAsunto(s)
Cromosomas Humanos Y , Mosaicismo , Deleción Cromosómica , Humanos , Leucocitos , Masculino , Cromosoma YRESUMEN
Obesity is a multifactorial disorder with high heritability (50-75%), which is probably higher in early-onset and severe cases. Although rare monogenic forms and several genes and regions of susceptibility, including copy number variants (CNVs), have been described, the genetic causes underlying the disease still remain largely unknown. We searched for rare CNVs (>100kb in size, altering genes and present in <1/2000 population controls) in 157 Spanish children with non-syndromic early-onset obesity (EOO: body mass index >3 standard deviations above the mean at <3 years of age) using SNP array molecular karyotypes. We then performed case control studies (480 EOO cases/480 non-obese controls) with the validated CNVs and rare sequence variants (RSVs) detected by targeted resequencing of selected CNV genes (n = 14), and also studied the inheritance patterns in available first-degree relatives. A higher burden of gain-type CNVs was detected in EOO cases versus controls (OR = 1.71, p-value = 0.0358). In addition to a gain of the NPY gene in a familial case with EOO and attention deficit hyperactivity disorder, likely pathogenic CNVs included gains of glutamate receptors (GRIK1, GRM7) and the X-linked gastrin-peptide receptor (GRPR), all inherited from obese parents. Putatively functional RSVs absent in controls were also identified in EOO cases at NPY, GRIK1 and GRPR. A patient with a heterozygous deletion disrupting two contiguous and related genes, SLCO4C1 and SLCO6A1, also had a missense RSV at SLCO4C1 on the other allele, suggestive of a recessive model. The genes identified showed a clear enrichment of shared co-expression partners with known genes strongly related to obesity, reinforcing their role in the pathophysiology of the disease. Our data reveal a higher burden of rare CNVs and RSVs in several related genes in patients with EOO compared to controls, and implicate NPY, GRPR, two glutamate receptors and SLCO4C1 in highly penetrant forms of familial obesity.
Asunto(s)
Variaciones en el Número de Copia de ADN , Obesidad/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Femenino , Sitios Genéticos , Humanos , Masculino , Neuropéptido Y/genética , Obesidad/diagnóstico , Transportadores de Anión Orgánico/genética , Linaje , Receptores de Ácido Kaínico/genética , Receptores de Glutamato Metabotrópico/genéticaRESUMEN
Detectable clonal mosaicism for large chromosomal events has been associated with aging and an increased risk of hematological and some solid cancers. We hypothesized that genetic cancer predisposition disorders, such as Fanconi anemia (FA), could manifest a high rate of chromosomal mosaic events (CMEs) in peripheral blood, which could be used as early biomarkers of cancer risk. We studied the prevalence of CMEs by single-nucleotide polymorphism (SNP) array in 130 FA patients' blood DNA and their impact on cancer risk. We detected 51 CMEs (4.4-159 Mb in size) in 16 out of 130 patients (12.3%), of which 9 had multiple CMEs. The most frequent events were gains at 3q (n = 6) and 1q (n = 5), both previously associated with leukemia, as well as rearrangements with breakpoint clustering within the major histocompatibility complex locus (P = 7.3 × 10-9). Compared with 15 743 age-matched population controls, FA patients had a 126 to 140 times higher risk of detectable CMEs in blood (P < 2.2 × 10-16). Prevalent and incident hematologic and solid cancers were more common in CME carriers (odds ratio [OR] = 11.6, 95% confidence interval [CI] = 3.4-39.3, P = 2.8 × 10-5), leading to poorer prognosis. The age-adjusted hazard risk (HR) of having cancer was almost 5 times higher in FA individuals with CMEs than in those without CMEs. Regarding survival, the HR of dying was 4 times higher in FA individuals having CMEs (HR = 4.0, 95% CI = 2.0-7.9, P = 5.7 × 10-5). Therefore, our data suggest that molecular karyotyping with SNP arrays in easy-to-obtain blood samples could be used for better monitoring of bone marrow clonal events, cancer risk, and overall survival of FA patients.
RESUMEN
Mosaic loss of chromosome Y (mLOY) leading to gonosomal XY/XO commonly occurs during aging, particularly in smokers. We investigated whether mLOY was associated with non-hematological cancer in three prospective cohorts (8,679 cancer cases and 5,110 cancer-free controls) and genetic susceptibility to mLOY. Overall, mLOY was observed in 7% of men, and its prevalence increased with age (per-year odds ratio (OR) = 1.13, 95% confidence interval (CI) = 1.12-1.15; P < 2 × 10(-16)), reaching 18.7% among men over 80 years old. mLOY was associated with current smoking (OR = 2.35, 95% CI = 1.82-3.03; P = 5.55 × 10(-11)), but the association weakened with years after cessation. mLOY was not consistently associated with overall or specific cancer risk (for example, bladder, lung or prostate cancer) nor with cancer survival after diagnosis (multivariate-adjusted hazard ratio = 0.87, 95% CI = 0.73-1.04; P = 0.12). In a genome-wide association study, we observed the first example of a common susceptibility locus for genetic mosaicism, specifically mLOY, which maps to TCL1A at 14q32.13, marked by rs2887399 (OR = 1.55, 95% CI = 1.36-1.78; P = 1.37 × 10(-10)).
Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Y , Proteínas Proto-Oncogénicas/genética , Anciano , Cromosomas Humanos Par 14 , Estudios de Cohortes , ADN de Neoplasias , Frecuencia de los Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Mosaicismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Regresión , Análisis de SupervivenciaRESUMEN
Next-generation sequencing (NGS) has the capacity of carrier screening in gamete donation (GD) programs. We have developed and validated an NGS carrier-screening test (qCarrier test) that includes 200 genes associated with 368 disorders (277 autosomal recessive and 37 X-linked). Carrier screening is performed on oocyte donation candidates and the male partner of oocyte recipient. Carriers of X-linked conditions are excluded from the GD program, whereas donors are chosen who do not carry mutations for the same gene/disease as the recipients. The validation phase showed a high sensitivity (>99% sensitivity) detecting all single-nucleotide variants, 13 indels, and 25 copy-number variants included in the validation set. A total of 1,301 individuals were analysed with the qCarrier test, including 483 candidate oocyte donors and 635 receptor couples, 105 females receiving sperm donation, and 39 couples seeking pregnancy. We identified 56% of individuals who are carriers for at least one genetic condition and 1.7% of female donors who were excluded from the program due to a carrier state of X-linked conditions. Globally, 3% of a priori assigned donations had a high reproductive risk that could be minimized after testing. Genetic counselling at different stages is essential for helping to facilitate a successful and healthy pregnancy.
Asunto(s)
Tamización de Portadores Genéticos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Variaciones en el Número de Copia de ADN , Femenino , Asesoramiento Genético , Humanos , Mutación INDEL , Masculino , Donación de Oocito , Polimorfismo de Nucleótido Simple , Salud ReproductivaRESUMEN
Copy number variants (CNVs) of the Williams-Beuren syndrome (WBS) 7q11.23 region are responsible for neurodevelopmental disorders with multisystem involvement and variable expressivity. We found 2 patients with a deletion and 1 patient with a duplication in this region sharing a common breakpoint located between the LIMK1 and EIF4H(WBSCR1) genes. One patient had a WBS phenotype, although testing with a commercially available FISH assay was negative for the deletion. A further test using array CGH showed an atypical WBS region deletion. The second patient showed global developmental delay, speech delay and poor motor skills with a deletion outside the WBS region. The third patient had manifestations compatible with an autism spectrum disorder showing a duplication in the WBS region. Our findings point to the existence of a previously unrecognized recurrent breakpoint responsible for rearrangements in the WBS region. Given that most commercial FISH assays include probes flanking this novel breakpoint, further testing with array CGH should be performed in patients with WBS and negative FISH results.