RESUMEN
Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.
RESUMEN
Skeletal muscle connective tissue (MCT) surrounds myofiber bundles to provide structural support, produce force transduction from tendons, and regulate satellite cell differentiation during muscle regeneration. Engineered muscle tissue composed of myofibers layered within MCT has not yet been developed. Herein, a bioengineering strategy to create MCT-layered myofibers through the development of stem cell fate-controlling biomaterials that achieve both myogenesis and fibroblast differentiation in a locally controlled manner at the single construct is introduced. The reciprocal role of transforming growth factor-beta 1 (TGF-ß1) and its inhibitor as well as 3D matrix stiffness to achieve co-differentiation of MCT fibroblasts and myofibers from a human-induced pluripotent stem cell (hiPSC)-derived paraxial mesoderm is studied. To avoid myogenic inhibition, TGF-ß1 is conjugated on the gelatin-based hydrogel to control the fibroblasts' populations locally; the TGF-ß1 degrades after 2 weeks, resulting in increased MCT-specific extracellular matrix (ECM) production. The locations of myofibers and fibroblasts are precisely controlled by using photolithography and co-axial wet spinning techniques, which results in the formation of MCT-layered functional myofibers in 3D constructs. This advanced engineering strategy is envisioned as a possible method for obtaining biomimetic human muscle grafts for various biomedical applications.
RESUMEN
Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.
Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Desarrollo de Músculos , Fibras Musculares Esqueléticas , Miofibrillas/fisiología , SarcómerosRESUMEN
Skeletal muscles play important roles in critical body functions and their injury or disease can lead to limitation of mobility and loss of independence. Current treatments result in variable functional recovery, while reconstructive surgery, as the gold-standard approach, is limited due to donor shortage, donor-site morbidity, and limited functional recovery. Skeletal muscle tissue engineering (SMTE) has generated enthusiasm as an alternative solution for treatment of injured tissue and serves as a functional disease model. Recently, bioprinting has emerged as a promising tool for recapitulating the complex and highly organized architecture of skeletal muscles at clinically relevant sizes. Here, skeletal muscle physiology, muscle regeneration following injury, and current treatments following muscle loss are discussed, and then bioprinting strategies implemented for SMTE are critically reviewed. Subsequently, recent advancements that have led to improvement of bioprinting strategies to construct large muscle structures, boost myogenesis in vitro and in vivo, and enhance tissue integration are discussed. Bioinks for muscle bioprinting, as an essential part of any bioprinting strategy, are discussed, and their benefits, limitations, and areas to be improved are highlighted. Finally, the directions the field should expand to make bioprinting strategies more translational and overcome the clinical unmet needs are discussed.
Asunto(s)
Bioimpresión , Músculo Esquelético , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido/químicaRESUMEN
The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.
Asunto(s)
Blastocisto/metabolismo , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Blastocisto/citología , Cromatina/genética , Técnicas de Cultivo de Embriones , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Histonas/genética , Humanos , Ratones , Fenotipo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitinas/genética , Ubiquitinas/metabolismoRESUMEN
Regeneration of skeletal muscle requires resident stem cells called satellite cells. Here, we report that the chromatin remodeler CHD4, a member of the nucleosome remodeling and deacetylase (NuRD) repressive complex, is essential for the expansion and regenerative functions of satellite cells. We show that conditional deletion of the Chd4 gene in satellite cells results in failure to regenerate muscle after injury. This defect is principally associated with increased stem cell plasticity and lineage infidelity during the expansion of satellite cells, caused by de-repression of non-muscle-cell lineage genes in the absence of Chd4. Thus, CHD4 ensures that a transcriptional program that safeguards satellite cell identity during muscle regeneration is maintained. Given the therapeutic potential of muscle stem cells in diverse neuromuscular pathologies, CHD4 constitutes an attractive target for satellite cell-based therapies.
Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , ADN Helicasas/genética , Músculo Esquelético/fisiología , Regeneración , Células Madre/citología , Células Madre/metabolismo , Animales , Biología Computacional , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Biológicos , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismoRESUMEN
Duchenne muscular dystrophy (DMD) is a devastating genetic disease leading to degeneration of skeletal muscles and premature death. How dystrophin absence leads to muscle wasting remains unclear. Here, we describe an optimized protocol to differentiate human induced pluripotent stem cells (iPSC) to a late myogenic stage. This allows us to recapitulate classical DMD phenotypes (mislocalization of proteins of the dystrophin-associated glycoprotein complex, increased fusion, myofiber branching, force contraction defects, and calcium hyperactivation) in isogenic DMD-mutant iPSC lines in vitro. Treatment of the myogenic cultures with prednisolone (the standard of care for DMD) can dramatically rescue force contraction, fusion, and branching defects in DMD iPSC lines. This argues that prednisolone acts directly on myofibers, challenging the largely prevalent view that its beneficial effects are caused by antiinflammatory properties. Our work introduces a human in vitro model to study the onset of DMD pathology and test novel therapeutic approaches.
Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/patología , Prednisolona/farmacología , Fenómenos Biomecánicos , Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Distrofina/deficiencia , Distrofina/metabolismo , Glicoproteínas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/genética , Mutación/genética , Optogenética , FenotipoRESUMEN
Human pluripotent stem cells (PSCs), which have the capacity to self-renew and differentiate into multiple cell types, offer tremendous therapeutic potential and invaluable flexibility as research tools. Recently, remarkable progress has been made in directing myogenic differentiation of human PSCs. The differentiation strategies, which were inspired by our knowledge of myogenesis in vivo, have provided an important platform for the study of human muscle development and modeling of muscular diseases, as well as a promising source of cells for cell therapy to treat muscular dystrophies. In this review, we summarize the current state of skeletal muscle generation from human PSCs, including transgene-based and transgene-free differentiation protocols, and 3D muscle tissue production through bioengineering approaches. We also highlight their basic and clinical applications, which facilitate the study of human muscle biology and deliver new hope for muscular disease treatment.