Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 120: 103730, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35489637

RESUMEN

The sympathetic nervous system (SNS) regulates skeletal muscle motor innervation and stabilizes the NMJ in health, disease and aging. Previous studies using both chemical (6-hydroxydopamine, 6-OHDA) and microsurgically-induced sympathetic denervation examined the NMJ organization and transmission in the mouse; however, a detailed quantification of the postterminal on larger hindlimb muscles involved in gait mechanics and posture is lacking. The purpose of this study was to determine whether targets of the sympathetic neuron (SN) exhibiting different intrinsic composition such as the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus muscles differ in their response to SN deprivation, and to develop a strategy to accurately quantify the impact of sympathectomy on the NMJ postterminal including those fibers located deeper in the muscle. This approach included muscle fixed ex vivo or through transcardial perfusion in mice treated with 6-OHDA or control ascorbic acid. We measured NMJ postterminal mean terminal total area, number of postterminal fragments, mean fragment area, and mean distance between fragments in free-floating alpha-bungarotoxin-stained in 1038 isolated muscle fibers. We found that muscle fiber sympathetic innervation plays a crucial role in the structural organization of the motorneuron-myofiber synapse postterminal and its deprivation leads to AChR cluster dispersion or shrinking as described in various neuromuscular diseases and aging.


Asunto(s)
Músculo Esquelético , Unión Neuromuscular , Animales , Ratones , Neuronas Motoras , Unión Neuromuscular/fisiología , Oxidopamina/toxicidad , Simpatectomía
2.
J Cachexia Sarcopenia Muscle ; 12(6): 1908-1924, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34546662

RESUMEN

BACKGROUND: The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions such as sarcopenia, the age-dependent decline in muscle mass, force, and power. Devising interventions that can adjust neurotransmitter release to changing physiological demands will require understanding how the sympathetic nervous system affects muscle motor innervation and muscle mass, which will prevent sarcopenia-associated impaired mobility, falls, institutionalization, co-morbidity, and premature death. Here, we tested the hypothesis that prolonged heart and neural crest derivative 2 (Hand2) expression in peripheral sympathetic neurons (SNs) ameliorates sympathetic muscle denervation, motor denervation, and sarcopenia in geriatric mice. METHODS: We delivered either a viral vector encoding the transcription factor Hand2 or an empty vector (EV) driven to SNs by the PRSx8 promoter by injecting the saphenous vein in 16-month-old C57BL/6 mice that were sacrificed 10-11 months later. Studies relied on sympathetic and muscle immunohistochemistry analysed by confocal microscopy, nerve and muscle protein expression assessed by immunoblots, nerve-evoked and muscle-evoked maximal muscle contraction force, extensor digitorum longus (EDL) muscle RNA sequencing, SN real-time PCR, and tests of physical performance using an inverted-cling grip test and in an open-arena setting. RESULTS: Examining the mice 10-11 months later, we found that inducing Hand2 expression in peripheral SNs preserved (i) the number of neurons (EV: 0.32 ± 0.03/µm2 , n = 6; Hand2: 0.92 ± 0.08/µm2 , n = 7; P < 0.0001) and size (EV: 279 ± 18 µm2 , n = 6; Hand2: 396 ± 18 µm2 , n = 7; P < 0.0001); (ii) lumbricalis muscle sympathetic innervation (EV: 1.4 ± 1.5 µm/µm2 , n = 5; Hand2: 12 ± 1.8 µm/µm2 , n = 5; P < 0.001); (iii) tibialis anterior, gastrocnemius, EDL, and soleus muscles weight and whole-body strength (EV: 48 ± 6.4 s, n = 6; Hand2: 102 ± 6.8 s, n = 6; P < 0.001); (iv) EDL type IIb, IIx, and II/IIx and soleus type I, IIa, IIx, IIa/IIx, and IIb/IIx myofibre cross-sectional area; (v) nerve-evoked (EV: 16 ± 2.7 mN; Hand2: 30 ± 4.4 mN; P < 0.001) and muscle-evoked (EV: 24 ± 3.8 mN, n = 5; Hand2: 38 ± 3.0 mN, n = 8; P < 0.001) muscle force by 150 Hz-3 s pulses; and (vi) motor innervation assessed by measuring presynaptic/postsynaptic neuromuscular junction area overlay. CONCLUSIONS: Preserving Hand2 expression in SNs from middle-aged to very old mice attenuates decreases in muscle mass and force by (i) maintaining skeletal muscle sympathetic and motor innervation, (ii) improving membrane and total acetylcholine receptor stability and nerve-evoked and muscle-evoked muscle contraction, (iii) preventing the elevation of inflammation and myofibrillar protein degradation markers, and (iv) increasing muscle autophagy.


Asunto(s)
Sarcopenia , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Ratones , Ratones Endogámicos C57BL , Cresta Neural , Unión Neuromuscular , Neuronas , Sarcopenia/genética , Sarcopenia/patología
3.
Ageing Res Rev ; 67: 101305, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33610815

RESUMEN

Examining neural etiologic factors'role in the decline of neuromuscular function with aging is essential to our understanding of the mechanisms underlying sarcopenia, the age-dependent decline in muscle mass, force and power. Innervation of the skeletal muscle by both motor and sympathetic axons has been established, igniting interest in determining how the sympathetic nervous system (SNS) affect skeletal muscle composition and function throughout the lifetime. Selective expression of the heart and neural crest derivative 2 gene in peripheral SNs increases muscle mass and force regulating skeletal muscle sympathetic and motor innervation; improving acetylcholine receptor stability and NMJ transmission; preventing inflammation and myofibrillar protein degradation; increasing autophagy; and probably enhancing protein synthesis. Elucidating the role of central SNs will help to define the coordinated response of the visceral and neuromuscular system to physiological and pathological challenges across ages. This review discusses the following questions: (1) Does the SNS regulate skeletal muscle motor innervation? (2) Does the SNS regulate presynaptic and postsynaptic neuromuscular junction (NMJ) structure and function? (3) Does sympathetic neuron (SN) regulation of NMJ transmission decline with aging? (4) Does maintenance of SNs attenuate aging sarcopenia? and (5) Do central SN group relays influence sympathetic and motor muscle innervation?


Asunto(s)
Sarcopenia , Envejecimiento , Humanos , Músculo Esquelético/patología , Unión Neuromuscular , Sarcopenia/patología , Sistema Nervioso Simpático
4.
J Cachexia Sarcopenia Muscle ; 12(1): 91-108, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258279

RESUMEN

BACKGROUND: Sarcopenia, or age-dependent decline in muscle force and power, impairs mobility, increasing the risk of falls, institutionalization, co-morbidity, and premature death. The discovery of adrenoceptors, which mediate the effects of the sympathetic nervous system (SNS) neurotransmitter norepinephrine on specific tissues, sparked the development of sympathomimetics that have profound influence on skeletal muscle mass. However, chronic administration has serious side effects that preclude their use for muscle-wasting conditions. Interventions that can adjust neurotransmitter release to changing physiological demands depend on understanding how the SNS affects neuromuscular transmission, muscle motor innervation, and muscle mass. METHODS: We examined age-dependent expression of the heart and neural crest derivative 2 (Hand2), a critical transcription factor for SN maintenance, and we tested the possibility that inducing its expression exclusively in sympathetic neurons (SN) will prevent (i) motor denervation, (ii) impaired neuromuscular junction (NMJ) transmission, and (iii) loss of muscle mass and function in old mice. To test this hypothesis, we delivered a viral vector carrying Hand2 expression or an empty vector exclusively in SNs by vein injection in 16-month-old C57BL/6 mice that were sacrificed 6 months later. Techniques include RNA-sequencing, real-time PCR, genomic DNA methylation, viral vector construct, tissue immunohistochemistry, immunoblot, confocal microscopy, electrophysiology, and in vivo mouse physical performance. RESULTS: Hand2 expression declines throughout life, but inducing its expression increased (i) the number and size of SNs, (ii) muscle sympathetic innervation, (iii) muscle weight and force and whole-body strength, (iv) myofiber size but not muscle fibre-type composition, (v) NMJ transmission and nerve-evoked muscle force, and (vi) motor innervation in old mice. Additionally, the SN controls a set of genes to reduce inflammation and to promote transcription factor activity, cell signalling, and synapse in the skeletal muscle. Hand2 DNA methylation may contribute, at least partially, to gene silencing. CONCLUSIONS: Selective expression of Hand2 in the mouse SNs from middle age through old age increases muscle mass and force by (i) regulating skeletal muscle sympathetic and motor innervation; (ii) improving acetylcholine receptor stability and NMJ transmission; (iii) preventing inflammation and myofibrillar protein degradation; (iv) increasing autophagy; and (v) probably enhancing protein synthesis.


Asunto(s)
Sarcopenia , Envejecimiento , Animales , Ratones , Ratones Endogámicos C57BL , Cresta Neural , Neuronas , Sarcopenia/etiología
5.
J Gerontol A Biol Sci Med Sci ; 75(8): 1473-1480, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-31956900

RESUMEN

This study was designed to determine whether and how the sympathetic nervous system (SNS) regulates motoneuron axon function and neuromuscular transmission in young (3-4-month) and geriatric (31-month) mice. Our approach included sciatic-peroneal nerve immunolabeling coregistration, and electrophysiological recordings in a novel mouse ex-vivo preparation, the sympathetic-peroneal nerve-lumbricalis muscle (SPNL). Here, the interaction between the motoneuron and SNS at the neuromuscular junction (NMJ) and muscle innervation reflect the complexity of the living mouse. Our data show that electrical stimulation of the sympathetic neuron at the paravertebral ganglia chain enhances motoneuron synaptic vesicle release at the NMJ in young mice, while in geriatric mice, this effect is blunted. We also found that blocking ß-AR prevents the sympathetic neuron from increasing NMJ transmission. Immunofluorescence coexpression analysis of immunolabeled ARs with choline acetyltransferase-, tyrosine hydroxylase-, or calcitonin gene-related peptide immunoreactive axons showed that α2B-AR is found mainly in sympathetic neurons, ß1-AR in sympathetic- and motor-neurons, and both decline significantly with aging. In summary, this study unveils the molecular substrate accounting for the influence of endogenous sympathetic neurons on motoneuron-muscle transmission in young mice and its decline with aging.


Asunto(s)
Envejecimiento/fisiología , Neuronas Motoras/fisiología , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Potenciales Sinápticos/fisiología , Vesículas Sinápticas/fisiología , Animales , Estimulación Eléctrica , Ratones Endogámicos C57BL , Unión Neuromuscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...