Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 266(Pt 1): 131158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552682

RESUMEN

Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.


Asunto(s)
Quitosano , Doxorrubicina , Violeta de Genciana , Niobio , Quitosano/química , Doxorrubicina/química , Adsorción , Niobio/química , Violeta de Genciana/química , Concentración de Iones de Hidrógeno , Carbón Orgánico/química , Cinética , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Teoría Funcional de la Densidad , Óxidos/química , Agua/química , Soluciones , Purificación del Agua/métodos
2.
Sci Total Environ ; 922: 171165, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38395171

RESUMEN

Despite the wide distribution and persistence of microplastics (MPs), their interactive effects with molluscicides are unknown. Schistosomiasis, a neglected tropical disease, affects 236.6 million people worldwide. Niclosamide (NCL) is the only molluscicide recommended by the World Health Organization (WHO) and it is used to control the population of Schistosoma spp.'s intermediate host. Thus, this study aimed to evaluate of the interaction between polyethylene (PE) MPs and NCL, and their associated toxicity in the freshwater snail Biomphalaria glabrata (Say 1818). Weathered PE MPs were characterized and theoretical analysis of NCL-MP adsorption nature was made using quantum mechanical calculations. The toxicity of NCL isolated (0.0265 to 0.0809 mg L-1) and under interaction with PE MPs (3400 µg L-1) in B. glabrata embryos and newly hatched snails was analyzed. In silico analysis confirmed the adsorption mechanisms of NCL into PE MPs. PE MPs decreased the NCL toxicity to both B. glabrata developmental stages, increasing their survival and NCL lethal concentrations, indicating concerns regarding NCL use as molluscicide in aquatic environments polluted by MPs. In conclusion, MPs may change the efficiency of chemicals used in snail control programs.


Asunto(s)
Moluscocidas , Niclosamida , Animales , Humanos , Niclosamida/toxicidad , Microplásticos , Plásticos/toxicidad , Caracoles , Moluscocidas/toxicidad
3.
J Chem Theory Comput ; 20(6): 2423-2432, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38217859

RESUMEN

Multiconfigurational pair-density functional theory (MC-PDFT) offers a promising solution to the challenges faced by traditional density functional theory (DFT) in addressing molecular systems containing transition metals, open-shells, or strong correlations in general. By utilizing both the density and on-top pair-density, MC-PDFT can make use of a more flexible multiconfigurational wave function to capture the necessary static correlation, while the pair-density functional also includes the effect of dynamic correlation. So far, MC-PDFT has been used after a multiconfigurational self-consistent field (MCSCF) step, using the orbitals and configuration interaction coefficients from the converged MCSCF wave function to compute PDFT energies and properties. Here, instead, we propose to perform a direct optimization of the wave function using the pair-density functionals, resulting in a variational formulation of MC-PDFT. We derive the expressions for the wave function gradient and illustrate their similarity to standard MCSCF equations. Furthermore, we illustrate the accuracy on a set of singlet-triplet gaps as well as dissociation curves. Our findings highlight one of MC-PDFT's standout features: a reduced dependency on the active space size compared to conventional multiconfigurational wave function methodologies. Additionally, we show that the computational cost of MC-PDFT is potentially lower than MCSCF and often on-par with standard Kohn-Sham DFT, which is demonstrated by performing a MC-PDFT calculation of the entire ferredoxin protein with 1447 atoms and nearly 12 000 basis functions.

4.
Nature ; 625(7994): 282-286, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200297

RESUMEN

The large-scale conversion of N2 and H2 into NH3 (refs. 1,2) over Fe and Ru catalysts3 for fertilizer production occurs through the Haber-Bosch process, which has been considered the most important scientific invention of the twentieth century4. The active component of the catalyst enabling the conversion was variously considered to be the oxide5, nitride2, metallic phase or surface nitride6, and the rate-limiting step has been associated with N2 dissociation7-9, reaction of the adsorbed nitrogen10 and also NH3 desorption11. This range of views reflects that the Haber-Bosch process operates at high temperatures and pressures, whereas surface-sensitive techniques that might differentiate between different mechanistic proposals require vacuum conditions. Mechanistic studies have accordingly long been limited to theoretical calculations12. Here we use X-ray photoelectron spectroscopy-capable of revealing the chemical state of catalytic surfaces and recently adapted to operando investigations13 of methanol14 and Fischer-Tropsch synthesis15-to determine the surface composition of Fe and Ru catalysts during NH3 production at pressures up to 1 bar and temperatures as high as 723 K. We find that, although flat and stepped Fe surfaces and Ru single-crystal surfaces all remain metallic, the latter are almost adsorbate free, whereas Fe catalysts retain a small amount of adsorbed N and develop at lower temperatures high amine (NHx) coverages on the stepped surfaces. These observations indicate that the rate-limiting step on Ru is always N2 dissociation. On Fe catalysts, by contrast and as predicted by theory16, hydrogenation of adsorbed N atoms is less efficient to the extent that the rate-limiting step switches following temperature lowering from N2 dissociation to the hydrogenation of surface species.

5.
J Phys Chem A ; 127(44): 9381-9388, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37889622

RESUMEN

Multiconfigurational pair-density functional theory (MC-PDFT) is a promising way to describe both strong and dynamic correlations in an inexpensive way. The functionals in MC-PDFT are often "translated" from standard spin density functionals. However, these translated functionals can in principle lead to "translated spin densities" with a nonzero imaginary component. Current developments so far neglect this imaginary part by simply setting it to zero. In this work, we show how this imaginary component is actually needed to reproduce the correct physical behavior in a range of cases, especially low-spin open shells. We showcase the resulting formalism on both local density approximation and generalized gradient approximation functionals and illustrate the numerical behavior by benchmarking a number of singlet-triplet splittings (ST gaps) of organic diradicals and low-lying excited states of some common organic molecules. The results demonstrate that this scheme improves existing translated functionals and gives more accurate results, even with minimal active spaces.

6.
J Chem Phys ; 157(16): 164705, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36319417

RESUMEN

We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10-8 Torr) and O2 (3 × 10-8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10-8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC-O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward "gas-like" CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole-dipole interaction while simultaneously increasing the CO oxidation barrier.

7.
Nat Commun ; 13(1): 6853, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369277

RESUMEN

Density functional theory predictions of binding energies and reaction barriers provide invaluable data for analyzing chemical transformations in heterogeneous catalysis. For high accuracy, effects of band structure and coverage, as well as the local bond strength in both covalent and non-covalent interactions, must be reliably described and much focus has been put on improving functionals to this end. Here, we show that a correction from higher-level calculations on small metal clusters can be applied to improve periodic band structure adsorption energies and barriers. We benchmark against 38 reliable experimental covalent and non-covalent adsorption energies and five activation barriers with mean absolute errors of 2.2 kcal mol-1, 2.7 kcal mol-1, and 1.1 kcal mol-1, respectively, which are lower than for functionals widely used and tested for surface science evaluations, such as BEEF-vdW and RPBE.


Asunto(s)
Teoría Cuántica , Elementos de Transición , Adsorción , Elementos de Transición/química , Catálisis , Metales
8.
ACS Catal ; 12(13): 7609-7621, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815066

RESUMEN

Carbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer-Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron-carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst's surface in relation to the reaction.

9.
Struct Dyn ; 9(1): 014101, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35071691

RESUMEN

The desorption of a carbon monoxide molecule from a Ru(0001) surface was studied by means of X-ray Absorption Spectra (XAS) computed with Transition Potential (TP-DFT) and Time Dependent (TD-DFT) DFT methods. By unraveling the evolution of the CO electronic structure upon desorption, we observed that at 2.3 Å from the surface, the CO molecule has already predominantly gas-phase character. While C 1s XAS is quite insensitive to changes in the C-O bond length, the O 1s excitation is very sensitive with the π* coming down in energy upon CO bond stretching, which competes with the increase in orbital energy due to the repulsive interaction with the metallic surface. We show in a systematic way that the TP-DFT method can describe the XAS rather well at the endpoints (chemisorbed and gas phase) but is affected by artificial charge transfer and/or incorrect spin treatment in the transition region in cases like CO, where there are low-lying π* orbitals and large exchange interactions between the core 1s and valence-acceptor π* orbitals. As an alternative, we demonstrate by comparing with experimental data that a linear response approach using TD-DFT employing common exchange-correlation functionals and finite-size clusters can yield a good description of the spectral evolution of the 1s → π* transition with correct spin and gas-to-chemisorbed chemical shifts in good agreement with experiment.

10.
RSC Adv ; 11(13): 7381-7390, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423255

RESUMEN

Nitric oxide (NO) has well known vasodilation effects in living organisms and its participation in the metastasis of cancer cells through the angiogenesis process has been demonstrated experimentally. Therefore, the uptake of NO has become one focus of investigation to produce anti-metastatic drugs. In this article we have investigated the uptake of NO by the ruthenium based metallodrug trans-tetrachloride(dimethylsulfoxide)imidazole ruthenate(iii) [Im]trans-[RuCl4(Im)(DMSO)], known as New Anti-tumor Metastasis Inhibitor-A (NAMI-A). Electronic structure calculations using Density Functional Theory, DFT, and State-Averaged Complete Active Space Self Consistent Field, SA-CASSCF, with second order perturbation theory corrections, NEVPT2 were carried out to investigate the mechanism involved in the uptake of NO by the Ru-based anticancer metallodrug NAMI-A. The calculations revealed that the reaction takes place at the triplet potential energy surface, with the singlet surface being ∼15 kcal mol-1 shifted to higher energies, and there is a surface crossing to form the most stable singlet product after the reaction takes place at the triplet surface. The spin pairing and electron transfer from the nitric oxide to the metallic fragment takes place at the region of the minimum energy crossing point between the two surfaces. The Ru-NO bond in the {Ru-NO}6 product has ∼10% of the RuIII-NO0 character. The SA-CASSCF/NEVPT2 calculations revealed that the uptake of NO by NAMI-A has a small energy barrier of ∼8 kcal mol-1 and, therefore a rate constant of 11.3 × 106 s-1 at 300 K. In addition, the reaction is thermodynamically favorable, with a Gibbs free energy of ∼30 kcal mol-1. These results show that the uptake of nitric oxide by the NAMI-A complex is kinetically and thermodynamically feasible in biological medium and, therefore, gives support to the anti-angiogenesis theory associated to the mode of action of NAMI-A and other related compounds.

11.
J Phys Chem A ; 124(21): 4280-4289, 2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32374604

RESUMEN

Based on density functional theory (DFT) electronic structure calculations with dispersion correction, we propose new reaction pathways in which no extra reaction step is necessary to account for the formation of 3,5,6-trichloro-2-pyridynol (TCP) within the process of tropospheric OH-initiated unimolecular decomposition of chlorpyrifos (CLP) and chlorpyrifos-methyl (CLPM). Chlorpyrifos and its analogous compound are among the most used organophosphorus pesticides worldwide, and their unimolecular decomposition in the troposphere is a dominant process of removal in the gas phase. The reaction pathways that we put forward have turned out to be the most exergonic ones among the three possible routes for the attack of the hydroxyl radical to the thiophosphoryl (P═S) bond of both CLP and CLPM. The results showed that the reaction is thermodynamically controlled with the formation of P-bonded adducts via a six-membered ring. The unimolecular decomposition of such reactive intermediates takes place with small energy barriers (less than 3 kcal mol-1) and is distinguished by hydrogen transfer to the nitrogen atom of the aromatic ring, resulting in the formation of 3,5,6-trichloro-2-pyridinol (TCP) and dialkyl phosphate radical (DAP·) product complexes in a single step.

12.
ACS Omega ; 3(6): 7027-7035, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30221236

RESUMEN

Complexes [Ag(H2BzPh)NO3] (1), [Ag(H2BzpCH3Ph)NO3] (2), [Ag(H2BzpClPh)NO3] (3), and [Ag(H2BzpNO2Ph)NO3] (4) were synthesized with 2-benzoylpyridine benzoylhydrazone (H2BzPh) and its para-methyl-benzoylhydrazone (H2BzpCH3Ph), para-chloro-benzoylhydrazone (H2BzpClPh), and para-nitro-benzoylhydrazone (H2BzpNO2Ph) derivatives. Experimental data indicate that the nitrate ligand binds more strongly to the silver center through one of the oxygen atoms, whereas the second oxygen atom from nitrate and the hydrazone oxygen makes much weaker interactions with the metal. Dissociation of nitrate most probably occurs in solution and in biological media. Interestingly, theoretical calculations suggested that when dissociation of the nitrate takes place, all bond orders involving the metal and the atoms from the hydrazone ligand increase significantly, showing that the bonding of nitrate results in the weakening of all other interactions in the metal coordination sphere. Upon complexation of the hydrazones to silver(I), cytotoxicity against B16F10 metastatic murine melanoma cells increased in all cases. Complexes (1-3) proved to be more cytotoxic than cisplatin. All compounds were more cytotoxic to B16F10 cells than to nontumorigenic murine Melan-A melanocyte cells. Interestingly, the selectivity index (SI = IC50 non-malignant cells/IC50 tumor cells) of complex (1), SI = 23, was much higher than that of the parent hydrazone ligand, SI = 9.5. Studies on the interactions of complexes (1-3) with DNA suggested that although (1-3) interact with calf thymus DNA by an intercalative mode, direct covalent binding of silver(I) to DNA probably does not occur. Complexes (1-3) interact in vitro with human serum albumin indicating that these compounds could be transported by albumin.

14.
J Phys Chem B ; 120(45): 11821-11833, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27754683

RESUMEN

In this article, density functional theory in conjunction with Monte Carlo statistical mechanical simulation was used to investigate the electronic structure, reduction potential, solvation, and solvent effects on the electronic spectra of nitrosyl ammine complexes using [Ru(NH3)5(NO)]2+/3+ as model compounds. In addition, ligand exchange reactions with solvent water molecules were also investigated. It is shown that the complexes are involved in strong hydrogen bonds in aqueous solution, with mean average energies of -13.5 ± 0.4 and -22.4 ± 0.4 kcal mol-1 for Ru(II) and Ru(III), respectively. Interestingly, for all the complexes studied, the NO ligand is not involved in hydrogen bonding interactions in aqueous solution. These strong hydrogen bonds are responsible for the high stability of these complexes in aqueous solution, showing formation constants Kf greater than 1021. The complex [Ru(NH3)5(NO)]3+ can easily be reduced by biological reducing agents in both the singlet and triplet states; however, the reduction is easier in the triplet state, which has a positive reduction potential of 1.70 V. The formation of [Ru(NH3)5(NO)]3+ in its most stable singlet state may take place through at least two singlet-triplet surface crossings leading to nonadiabatic effects. The existence of the minimum-energy crossing points makes the release of NO from the triplet state more favorable, with an activation energy almost seven times lower (∼6 kcal mol-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA