Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Immunother Cancer ; 12(8)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214651

RESUMEN

BACKGROUND: Activating and inhibitory receptors of natural killer (NK) cells such as NKp, NKG2, or CLEC are highly relevant to cold tumors including glioblastoma (GBM). Here, we aimed to characterize the expression of these receptors in GBM to gain insight into their potential role as modulators of the intratumoral microenvironment. METHODS: We performed a transcriptomic analysis of several NK receptors with a focus on the activating receptor encoded by KLRC2, NKG2C, among bulk and single-cell RNA sequencing GBM data sets. We also evaluated the effects of KLRC2-overexpressing GL261 cells in mice treated with or without programmed cell death protein-1 (PD-1) monoclonal antibody (mAb). Finally, we analyzed samples from two clinical trials evaluating PD-1 mAb effects in patients with GBM to determine the potential of NKG2C to serve as a biomarker of response. RESULTS: We observed significant expression of several inhibitory NK receptors on GBM-infiltrating NK and T cells, which contrasts with the strong expression of KLRC2 on tumor cells, mainly at the infiltrative margin. Neoplastic KLRC2 expression was associated with a reduction in the number of myeloid-derived suppressor cells and with a higher level of tumor-resident lymphocytes. A stronger antitumor activity after PD-1 mAb treatment was observed in NKG2Chigh-expressing tumors both in mouse models and patients with GBM whereas the expression of inhibitory NK receptors showed an inverse association. CONCLUSIONS: This study explored the role of neoplastic NKG2C/KLRC2 expression in shaping the immune profile of GBM and suggests that it is a predictive biomarker for positive responses to immune checkpoint inhibitor treatment in patients with GBM. Future studies could further validate this finding in prospective trials.


Asunto(s)
Glioblastoma , Inmunoterapia , Subfamília C de Receptores Similares a Lectina de Células NK , Glioblastoma/inmunología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Ratones , Animales , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Inmunoterapia/métodos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Femenino , Microambiente Tumoral
2.
Nat Commun ; 15(1): 4091, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750034

RESUMEN

Cibisatamab is a bispecific antibody-based construct targeting carcinoembryonic antigen (CEA) on tumour cells and CD3 epsilon chain as a T-cell engager. Here we evaluated cibisatamab for advanced CEA-positive solid tumours in two open-label Phase 1 dose-escalation and -expansion studies: as a single agent with or without obinutuzumab in S1 (NCT02324257) and with atezolizumab in S2 (NCT02650713). Primary endpoints were safety, dose finding, and pharmacokinetics in S1; safety and dose finding in S2. Secondary endpoints were anti-tumour activity (including overall response rate, ORR) and pharmacodynamics in S1; anti-tumour activity, pharmacodynamics and pharmacokinetics in S2. S1 and S2 enrolled a total of 149 and 228 patients, respectively. Grade ≥3 cibisatamab-related adverse events occurred in 36% of S1 and 49% of S2 patients. The ORR was 4% in S1 and 7% in S2. In S2, patients with microsatellite stable colorectal carcinoma (MSS-CRC) given flat doses of cibisatamab and atezolizumab demonstrated an ORR of 14%. In S1 and S2, 40% and 52% of patients, respectively, developed persistent anti-drug antibodies (ADAs). ADA appearance could be mitigated by obinutuzumab-pretreatment, with 8% of patients having persistent ADAs. Overall, cibisatamab warrants further exploration in immunotherapy combination strategies for MSS-CRC.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Monoclonales Humanizados , Complejo CD3 , Antígeno Carcinoembrionario , Neoplasias , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/farmacocinética , Anticuerpos Biespecíficos/administración & dosificación , Anticuerpos Biespecíficos/efectos adversos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Complejo CD3/inmunología , Adulto , Antígeno Carcinoembrionario/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética
3.
Clin Cancer Res ; 30(13): 2693-2701, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630781

RESUMEN

PURPOSE: Simlukafusp alfa [fibroblast activation protein α-targeted IL2 variant (FAP-IL2v)], a tumor-targeted immunocytokine, comprising an IL2 variant moiety with abolished CD25 binding fused to human IgG1, is directed against fibroblast activation protein α. This phase I, open-label, multicenter, dose-escalation, and extension study (NCT02627274) evaluated the safety, pharmacokinetics, pharmacodynamics, and antitumor activity of FAP-IL2v in patients with advanced/metastatic solid tumors. PATIENTS AND METHODS: Participants received FAP-IL2v intravenously once weekly. Dose escalation started at 5 mg; flat dosing (≤25 mg) and intraparticipant uptitration regimens (15/20, 20/25, 20/20/35, and 20/35/35 mg) were evaluated. Primary objectives were dose-limiting toxicities, maximum tolerated dose, recommended expansion dose, and pharmacokinetics. RESULTS: Sixty-one participants were enrolled. Dose-limiting toxicities included fatigue (flat dose 20 mg: n = 1), asthenia (25 mg: n = 1), drug-induced liver injury (uptitration regimen 20/25 mg: n = 1), transaminase increase (20/25 mg: n = 1), and pneumonia (20/35/35 mg: n = 1). The uptitration regimen 15/20 mg was determined as the maximum tolerated dose and was selected as the recommended expansion dose. Increases in peripheral blood absolute immune cell counts were seen for all tested doses [NK cells, 13-fold; CD4+ T cells (including regulatory T cells), 2-fold; CD8+ T cells, 3.5-fold] but without any percentage change in regulatory T cells. Clinical activity was observed from 5 mg [objective response rate, 5.1% (n = 3); disease control rate, 27.1% (n = 16)]. Responses were durable [n = 3, 2.8 (censored), 6.3, and 43.4 months]. CONCLUSIONS: FAP-IL2v had a manageable safety profile and showed initial signs of antitumor activity in advanced/metastatic solid tumors.


Asunto(s)
Dosis Máxima Tolerada , Neoplasias , Humanos , Femenino , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/genética , Persona de Mediana Edad , Anciano , Adulto , Interleucina-2/administración & dosificación , Interleucina-2/efectos adversos , Interleucina-2/farmacocinética , Interleucina-2/genética , Metástasis de la Neoplasia , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/efectos adversos , Proteínas Recombinantes de Fusión/uso terapéutico , Resultado del Tratamiento , Endopeptidasas/administración & dosificación , Proteínas de la Membrana
4.
Clin Cancer Res ; 30(18): 4131-4142, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-38630754

RESUMEN

PURPOSE: Patients with cancer frequently undergo radiotherapy in their clinical management with unintended irradiation of blood vessels and copiously irrigated organs in which polymorphonuclear leukocytes circulate. Following the observation that such low doses of ionizing radiation are able to induce neutrophils to extrude neutrophil extracellular traps (NET), we have investigated the mechanisms, consequences, and occurrence of such phenomena in patients undergoing radiotherapy. EXPERIMENTAL DESIGN: NETosis was analyzed in cultures of neutrophils isolated from healthy donors, patients with cancer, and cancer-bearing mice under confocal microscopy. Cocultures of radiation-induced NETs, immune effector lymphocytes, and tumor cells were used to study the effects of irradiation-induced NETs on immune cytotoxicity. Radiation-induced NETs were intravenously injected to mice for assessing their effects on metastasis. Circulating NETs in irradiated patients with cancer were measured using ELISA methods for detecting MPO-DNA complexes and citrullinated histone 3. RESULTS: Irradiation of neutrophils with very low γ-radiation doses (0.5-1 Gy) elicits NET formation in a manner dependent on oxidative stress, NADPH oxidase activity, and autocrine IL8. Radiation-induced NETs interfere with NK cell and T-cell cytotoxicity. As a consequence, preinjection of irradiation-induced NETs increases the number of successful metastases in mouse tumor models. Increases in circulating NETs were readily detected in two prospective series of patients following the first fraction of their radiotherapy courses. CONCLUSIONS: NETosis is induced by low-dose ionizing irradiation in a neutrophil-intrinsic fashion, and radiation-induced NETs are able to interfere with immune-mediated cytotoxicity. Radiation-induced NETs foster metastasis in mouse models and can be detected in the circulation of patients undergoing conventional radiotherapy treatments. See related commentary by Mowery and Luke, p. 3965.


Asunto(s)
Trampas Extracelulares , Rayos gamma , Neoplasias , Neutrófilos , Trampas Extracelulares/efectos de la radiación , Trampas Extracelulares/metabolismo , Humanos , Animales , Ratones , Neutrófilos/efectos de la radiación , Neutrófilos/inmunología , Rayos gamma/efectos adversos , Neoplasias/radioterapia , Neoplasias/patología , Radiación Ionizante , Estrés Oxidativo/efectos de la radiación , Línea Celular Tumoral , Femenino , Interleucina-8/metabolismo , Masculino
5.
Methods Cell Biol ; 185: 99-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556454

RESUMEN

Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.


Asunto(s)
Glioblastoma , Radioterapia Guiada por Imagen , Ratones , Humanos , Animales , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Glioblastoma/patología , Glioblastoma/radioterapia , Modelos Animales de Enfermedad
6.
Mol Cancer ; 23(1): 61, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519913

RESUMEN

BACKGROUND: Immuno-radiotherapy may improve outcomes for patients with advanced solid tumors, although optimized combination modalities remain unclear. Here, we report the colorectal (CRC) cohort analysis from the SABR-PDL1 trial that evaluated the PD-L1 inhibitor atezolizumab in combination with stereotactic body radiation therapy (SBRT) in advanced cancer patients. METHODS: Eligible patients received atezolizumab 1200 mg every 3 weeks until progression or unmanageable toxicity, together with ablative SBRT delivered concurrently with the 2nd cycle (recommended dose of 45 Gy in 3 fractions, adapted upon normal tissue tolerance constraint). SBRT was delivered to at least one tumor site, with at least one additional measurable lesion being kept from the radiation field. The primary efficacy endpoint was one-year progression-free survival (PFS) rate from the start of atezolizumab. Sequential tumor biopsies were collected for deep multi-feature immune profiling. RESULTS: Sixty pretreated (median of 2 prior lines) advanced CRC patients (38 men [63%]; median age, 59 years [range, 20-81 years]; 77% with liver metastases) were enrolled in five centers (France: n = 4, Spain: n = 1) from 11/2016 to 04/2019. All but one (98%) received atezolizumab and 54/60 (90%) received SBRT. The most frequently irradiated site was lung (n = 30/54; 56.3%). Treatment-related G3 (no G4-5) toxicity was observed in 3 (5%) patients. Median OS and PFS were respectively 8.4 [95%CI:5.9-11.6] and 1.4 months [95%CI:1.2-2.6], including five (9%) patients with PFS > 1 year (median time to progression: 19.2 months, including 2/5 MMR-proficient). Best overall responses consisted of stable disease (n = 38; 64%), partial (n = 3; 5%) and complete response (n = 1; 2%). Immune-centric multiplex IHC and RNAseq showed that SBRT redirected immune cells towards tumor lesions, even in the case of radio-induced lymphopenia. Baseline tumor PD-L1 and IRF1 nuclear expression (both in CD3 + T cells and in CD68 + cells) were higher in responding patients. Upregulation of genes that encode for proteins known to increase T and B cell trafficking to tumors (CCL19, CXCL9), migration (MACF1) and tumor cell killing (GZMB) correlated with responses. CONCLUSIONS: This study provides new data on the feasibility, efficacy, and immune context of tumors that may help identifying advanced CRC patients most likely to respond to immuno-radiotherapy. TRIAL REGISTRATION: EudraCT N°: 2015-005464-42; Clinicaltrial.gov number: NCT02992912.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Radiocirugia , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/efectos adversos , Neoplasias Colorrectales/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Radiocirugia/efectos adversos , Adulto Joven , Adulto , Anciano , Anciano de 80 o más Años , Femenino
7.
Immunol Rev ; 321(1): 143-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37822051

RESUMEN

Antigen cross-priming of CD8+ T cells is a critical process necessary for the effective expansion and activation of CD8+ T cells endowed with the ability to recognize and destroy tumor cells. The cross-presentation of tumor antigens to cross-prime CD8+ T cells is mainly mediated, if not only, by a subset of professional antigen-presenting cells termed type-1 conventional dendritic cells (cDC1). The demise of malignant cells can be immunogenic if it occurs in the context of premortem stress. These ways of dying are termed immunogenic cell death (ICD) and are associated with biochemical features favoring cDC1 for the efficient cross-priming of tumor antigens. Immunosurveillance and the success of immunotherapies heavily rely on the ability of cytotoxic immune cells, primarily CD8+ T cells and NK cells, to detect and eliminate tumor cells through mechanisms collectively known as cytotoxicity. Recent studies have revealed the significance of NK- and CTL-mediated cytotoxicity as a prominent form of immunogenic cell death, resulting in mechanisms that promote and sustain antigen-specific immune responses. This review focuses on the mechanisms underlying the cross-presentation of antigens released during tumor cell killing by cytotoxic immune cells, with an emphasis on the role of cDC1 cells. Indeed, cDC1s are instrumental in the effectiveness of most immunotherapies, underscoring the significance of tumor antigen cross-priming in contexts of immunogenic cell death. The notion of the potent immunogenicity of cell death resulting from NK or cytotoxic T lymphocyte (CTL)-mediated cytotoxicity has far-reaching implications for cancer immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Reactividad Cruzada , Humanos , Presentación de Antígeno , Muerte Celular Inmunogénica , Antígenos de Neoplasias , Células Dendríticas
8.
Oncoimmunology ; 12(1): 2197370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035637

RESUMEN

BO-112 is a poly I:C-based viral mimetic that exerts anti-tumor efficacy when intratumorally delivered in mouse models. Intratumoral BO-112 synergizes in mice with systemic anti-PD-1 mAbs and this combination has attained efficacy in PD1-refractory melanoma patients. We sought to evaluate the anti-tumor efficacy of BO-112 pre-surgically applied in neoadjuvant settings to mouse models. We have observed that repeated intratumoral injections of BO-112 prior to surgical excision of the primary tumor significantly reduced tumor metastasis from orthotopically implanted 4T1-derived tumors and subcutaneous MC38-derived tumors in mice. Such effects were enhanced when combined with systemic anti-PD-1 mAb. The anti-tumor efficacy of this neoadjuvant immunotherapy approach depended on the presence of antigen-specific effector CD8 T cells and cDC1 antigen-presenting cells. Since BO-112 has been successful in phase-two clinical trials for metastatic melanoma, these results provide a strong rationale for translating this pre-surgical strategy into clinical settings, especially in combination with standard-of-care checkpoint inhibitors.


Asunto(s)
Melanoma , Terapia Neoadyuvante , Animales , Ratones , Linfocitos T , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Adyuvantes Inmunológicos
9.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631161

RESUMEN

BACKGROUND: Radioimmunotherapy combines irradiation of tumor lesions with immunotherapy to achieve local and abscopal control of cancer. Most immunotherapy agents are given systemically, but strategies for delivering immunotherapy locally are under clinical scrutiny to maximize efficacy and avoid toxicity. Local immunotherapy, by injecting various pathogen-associated molecular patterns, has shown efficacy both preclinically and clinically. BO-112 is a viral mimetic based on nanoplexed double-stranded RNA (poly I:C) which exerts immune-mediated antitumor effects in mice and humans on intratumoral delivery. BO-112 and focal irradiation were used to make the proof-of-concept for local immunotherapy plus radiation therapy combinations. METHODS: Murine transplantable tumor cell lines (TS/A, MC38 and B16-OVA) were used to show increased immunogenic features under irradiation, as well as in bilateral tumor models in which only one of the lesions was irradiated or/and injected with BO-112. Flow cytometry and multiplex tissue immunofluorescence were used to determine the effects on antitumor immunity. Depletions of immune cell populations and knockout mice for the IFNAR and BATF-3 genes were used to delineate the immune system requirements for efficacy. RESULTS: In cultures of TS/A breast cancer cells, the combination of irradiation and BO-112 showed more prominent features of immunogenic tumor cell death in terms of calreticulin exposure. Injection of BO-112 into the tumor lesion receiving radiation achieved excellent control of the treated tumor and modest delays in contralateral tumor progression. Local effects were associated with more prominent infiltrates of antitumor cytotoxic tumor lymphocytes (CTLs). Importantly, local irradiation plus BO-112 in one of the tumor lesions that enhanced the therapeutic effects of radiotherapy on distant irradiated lesions that were not injected with BO-112. Hence, this beneficial effect of local irradiation plus BO-112 on a tumor lesion enhanced the therapeutic response to radiotherapy on distant non-injected lesions. CONCLUSION: This study demonstrates that local BO-112 immunotherapy and focal irradiation may act in synergy to achieve local tumor control. Irradiation plus BO-112 in one of the tumor lesions enhanced the therapeutic effects on distant irradiated lesions that were not injected with BO-112, suggesting strategies to treat oligometastatic patients with lesions susceptible to radiotherapy and with at least one tumor accessible for repeated BO-112 intratumoral injections.


Asunto(s)
Linfocitos T CD8-positivos , Poli I-C , Radioinmunoterapia , Animales , Ratones , Adyuvantes Inmunológicos/metabolismo , Inmunoterapia , Poli I-C/metabolismo
10.
Nat Cancer ; 3(6): 665-680, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35764745

RESUMEN

Checkpoint inhibitor-based cancer immunotherapy is often combined in the clinic with other immunotherapy strategies, targeted therapies, chemotherapy or standard-of-care treatments to achieve superior therapeutic efficacy. The large number of immunotherapy combinations that are currently undergoing clinical testing necessitate the establishment of faithful criteria to prioritize optimal combinations with evidence of synergy, to determine their safety and optimal sequence of administration and to identify biomarkers of therapy resistance and response. In this review, we focus on recent developments in immunotherapy combinations and reflect on how combinations should be optimized to maximize the impact of immunotherapy in clinical oncology.


Asunto(s)
Factores Inmunológicos , Inmunoterapia , Instituciones de Atención Ambulatoria , Inmunoterapia/efectos adversos , Oncología Médica
11.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236742

RESUMEN

BACKGROUND: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. METHODS: We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. RESULTS: CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. CONCLUSION: sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.


Asunto(s)
Inmunoterapia , Neoplasias , Animales , Biomarcadores/metabolismo , Linfocitos T CD8-positivos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Receptores del Factor de Necrosis Tumoral
12.
Theranostics ; 12(3): 1373-1387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154495

RESUMEN

Rationale: The CEA-CD3 T cell bispecific antibody cibisatamab (CEA-TCB) is currently undergoing clinical trials. Here we study its performance against three-dimensional tumor organoids in cocultures with T cells as compared to a higher affinity CEACAM5-CD3 (CEACAM5-TCB) bispecific antibody using time-lapse confocal microscopy. Methods: Pre-labelled spheroids derived from colon cancer cell lines and primary organoids derived from four colorectal cancer surgical specimens, which expressed different graded levels of CEA, were exposed in cocultures to T lymphocytes. Cocultures were treated with CEA-CD3 T-cell engagers and were followed by live confocal microscopy. Caspase 3 activation detected in real-time was used as an indicator of tumor cell death. Co-cultures were also set up with autologous tumor-associated fibroblasts to test the co-stimulatory effect of a fibroblast activated protein (FAP)- targeted 4-1BBL bispecific antibody fusion protein currently undergoing clinical trials. Results: Tumor-cell killing of 3D colon carcinoma cultures was dependent on the levels of surface CEA expression, in such a way that the lower affinity agent (CEA-TCB) did not mediate killing by human preactivated T cells below a certain CEA expression threshold, while the high affinity construct (CEACAM5-TCB) remained active on the low CEA expressing organoids. Modelling heterogeneity in the levels of CEA expression by coculturing CEA high and low organoids showed measurable but weak bystander killing. Cocultures of tumor organoids, autologous fibroblasts and T cells allowed to observe a costimulatory effect of anti-FAP-4-1BBL both to release IFNγ and to attain more efficacious tumor cell killing. Conclusion: Three-dimensional tumor cocultures with T cells using live confocal microscopy provide suitable models to test the requirements for colon-cancer redirected killing as elicited by CEA-targeted T-cell engagers undergoing clinical trials and treatment allow combinations to be tested in a relevant preclinical system.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno Carcinoembrionario , Neoplasias del Colon , Linfocitos T , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Complejo CD3/inmunología , Antígeno Carcinoembrionario/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Humanos , Activación de Linfocitos , Organoides/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
13.
Cancer Discov ; 12(5): 1356-1377, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35191482

RESUMEN

ABSTRACT: Locoregional failure (LRF) in patients with breast cancer post-surgery and post-irradiation is linked to a dismal prognosis. In a refined new model, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1/CD203a (ENPP1) to be closely associated with LRF. ENPP1hi circulating tumor cells (CTC) contribute to relapse by a self-seeding mechanism. This process requires the infiltration of polymorphonuclear myeloid-derived suppressor cells and neutrophil extracellular trap (NET) formation. Genetic and pharmacologic ENPP1 inhibition or NET blockade extends relapse-free survival. Furthermore, in combination with fractionated irradiation, ENPP1 abrogation obliterates LRF. Mechanistically, ENPP1-generated adenosinergic metabolites enhance haptoglobin (HP) expression. This inflammatory mediator elicits myeloid invasiveness and promotes NET formation. Accordingly, a significant increase in ENPP1 and NET formation is detected in relapsed human breast cancer tumors. Moreover, high ENPP1 or HP levels are associated with poor prognosis. These findings unveil the ENPP1/HP axis as an unanticipated mechanism exploited by tumor cells linking inflammation to immune remodeling favoring local relapse. SIGNIFICANCE: CTC exploit the ENPP1/HP axis to promote local recurrence post-surgery and post-irradiation by subduing myeloid suppressor cells in breast tumors. Blocking this axis impairs tumor engraftment, impedes immunosuppression, and obliterates NET formation, unveiling new opportunities for therapeutic intervention to eradicate local relapse and ameliorate patient survival. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Neoplasias de la Mama , Células Supresoras de Origen Mieloide , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/radioterapia , Femenino , Haptoglobinas , Humanos , Células Supresoras de Origen Mieloide/metabolismo , Recurrencia Local de Neoplasia/genética , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
14.
Cancer Discov ; 12(5): 1248-1265, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176764

RESUMEN

Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE: DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1 , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Linfocitos T
15.
Cancers (Basel) ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36612017

RESUMEN

The study of lymphatic tumor vasculature has been gaining interest in the context of cancer immunotherapy. These vessels constitute conduits for immune cells' transit toward the lymph nodes, and they endow tumors with routes to metastasize to the lymph nodes and, from them, toward distant sites. In addition, this vasculature participates in the modulation of the immune response directly through the interaction with tumor-infiltrating leukocytes and indirectly through the secretion of cytokines and chemokines that attract leukocytes and tumor cells. Radiotherapy constitutes the therapeutic option for more than 50% of solid tumors. Besides impacting transformed cells, RT affects stromal cells such as endothelial and immune cells. Mature lymphatic endothelial cells are resistant to RT, but we do not know to what extent RT may affect tumor-aberrant lymphatics. RT compromises lymphatic integrity and functionality, and it is a risk factor to the onset of lymphedema, a condition characterized by deficient lymphatic drainage and compromised tissue homeostasis. This review aims to provide evidence of RT's effects on tumor vessels, particularly on lymphatic endothelial cell physiology and immune properties. We will also explore the therapeutic options available so far to modulate signaling through lymphatic endothelial cell receptors and their repercussions on tumor immune cells in the context of cancer. There is a need for careful consideration of the RT dosage to come to terms with the participation of the lymphatic vasculature in anti-tumor response. Here, we provide new approaches to enhance the contribution of the lymphatic endothelium to radioimmuno-oncology.

16.
Nat Commun ; 12(1): 7296, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911975

RESUMEN

CD137 (4-1BB; TNFSR9) is an activation-induced surface receptor that through costimulation effects provide antigen-primed T cells with augmented survival, proliferation and effector functions as well as metabolic advantages. These immunobiological mechanisms are being utilised for cancer immunotherapy with agonist CD137-binding and crosslinking-inducing agents that elicit CD137 intracellular signaling. In this study, side-by-side comparisons show that provision of CD137 costimulation in-cis with regard to the TCR-CD3-ligating cell is superior to that provided in-trans in terms of T cell activation, proliferation, survival, cytokine secretion and mitochondrial fitness in mouse and human. Cis ligation of CD137 relative to the TCR-CD3 complex results in more intense canonical and non-canonical NF-κB signaling and provides a more robust induction of cell cycle and DNA damage repair gene expression programs. Here we report that the superiority of cis versus trans CD137-costimulation is readily observed in vivo and is relevant for understanding the immunotherapeutic effects of CAR T cells and CD137 agonistic therapies currently undergoing clinical trials, which may provide costimulation either in cis or in trans.


Asunto(s)
Complejo CD3/inmunología , Linfocitos T CD8-positivos/inmunología , Complejo Receptor-CD3 del Antígeno de Linfocito T/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Animales , Complejo CD3/genética , Proliferación Celular , Citocinas/genética , Citocinas/inmunología , Humanos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Complejo Receptor-CD3 del Antígeno de Linfocito T/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
17.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34824158

RESUMEN

BACKGROUND: BO-112 is a nanoplexed form of polyinosinic:polycytidylic acid that acting on toll-like receptor 3 (TLR3), melanoma differentiation-associated protein 5 (MDA5) and protein kinase RNA-activated (PKR) elicits rejection of directly injected transplanted tumors, but has only modest efficacy against distant untreated tumors. Its clinical activity has also been documented in early phase clinical trials. The 5,6-dimethylxanthenone-4-acetic acid (DMXAA) stimulator of interferon genes (STING) agonist shows a comparable pattern of efficacy when used via intratumoral injections. METHODS: Mice subcutaneously engrafted with bilateral MC38 and B16.OVA-derived tumors were treated with proinflammatory immunotherapy agents known to be active when intratumorally delivered. The combination of BO-112 and DMXAA was chosen given its excellent efficacy and the requirements for antitumor effects were studied on selective depletion of immune cell types and in gene-modified mouse strains lacking basic leucine zipper ATF-like transcription factor 3 (BATF3), interferon-α/ß receptor (IFNAR) or STING. Spatial requirements for the injections were studied in mice bearing three tumor lesions. RESULTS: BO-112 and DMXAA when co-injected in one of the lesions of mice bearing concomitant bilateral tumors frequently achieved complete local and distant antitumor efficacy. Synergistic effects were contingent on CD8 T cell lymphocytes and dependent on conventional type 1 dendritic cells, responsiveness to type I interferon (IFN) and STING function in the tumor-bearing host. Efficacy was preserved even if BO-112 and DMXAA were injected in separate lesions in a manner able to control another untreated third-party tumor. Efficacy could be further enhanced on concurrent PD-1 blockade. CONCLUSION: Clinically feasible co-injections of BO-112 and a STING agonist attain synergistic efficacy able to eradicate distant untreated tumor lesions.


Asunto(s)
Células Dendríticas/inmunología , Inmunoterapia/métodos , Poli I-C/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inyecciones Intralesiones , Ratones
18.
Clin Cancer Res ; 27(20): 5443-5445, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34344796

RESUMEN

Radiotherapy and immunotherapy can be concomitantly or sequentially combined seeking synergistic effects in terms of control of irradiated tumors and abscopal effects on nonirradiated lesions. Clinical-trial testing of such combinations faces several obstacles to demonstrate efficacy and needs improvements in trial design, patient selection, evaluation of results and biomarker discovery.See related article by Foster et al., p. 5510.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Factores Inmunológicos , Neoplasias/terapia
19.
J Pathol ; 255(2): 190-201, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34184758

RESUMEN

Neutrophil extracellular traps (NETs) are webs of extracellular nuclear DNA extruded by dying neutrophils infiltrating tissue. NETs constitute a defence mechanism to entrap and kill fungi and bacteria. Tumours induce the formation of NETs to the advantage of the malignancy via a variety of mechanisms shown in mouse models. Here, we investigated the presence of NETs in a variety of human solid tumours and their association with IL-8 (CXCL8) protein expression and CD8+ T-cell density in the tumour microenvironment. Multiplex immunofluorescence panels were developed to identify NETs in human cancer tissues by co-staining with the granulocyte marker CD15, the neutrophil marker myeloperoxidase and citrullinated histone H3 (H3Cit), as well as IL-8 protein and CD8+ T cells. Three ELISA methods to detect and quantify circulating NETs in serum were optimised and utilised. Whole tumour sections and tissue microarrays from patients with non-small cell lung cancer (NSCLC; n = 14), bladder cancer (n = 14), melanoma (n = 11), breast cancer (n = 31), colorectal cancer (n = 20) and mesothelioma (n = 61) were studied. Also, serum samples collected retrospectively from patients with metastatic melanoma (n = 12) and NSCLC (n = 34) were ELISA assayed to quantify circulating NETs and IL-8. NETs were detected in six different human cancer types with wide individual variation in terms of tissue density and distribution. At least in NSCLC, bladder cancer and metastatic melanoma, NET density positively correlated with IL-8 protein expression and inversely correlated with CD8+ T-cell densities. In a series of serum samples from melanoma and NSCLC patients, a positive correlation between circulating NETs and IL-8 was found. In conclusion, NETs are detectable in formalin-fixed human biopsy samples from solid tumours and in the circulation of cancer patients with a considerable degree of individual variation. NETs show a positive association with IL-8 and a trend towards a negative association with CD8+ tumour-infiltrating lymphocytes. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Trampas Extracelulares/inmunología , Interleucina-8/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Humanos
20.
J Immunother Cancer ; 9(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33653801

RESUMEN

Immune checkpoint inhibitors (ICIs) have improved overall survival for cancer patients, however, optimal duration of ICI therapy has yet to be defined. Given ICIs were first used to treat patients with metastatic melanoma, a condition that at the time was incurable, little attention was initially paid to how much therapy would be needed for a durable response. As the early immunotherapy trials have matured past 10 years, a significant per cent of patients have demonstrated durable responses; it is now time to determine whether patients have been overtreated, and if durable remissions can still be achieved with less therapy, limiting the physical and financial toxicity associated with years of treatment. Well-designed trials are needed to identify optimal duration of therapy, and to define biomarkers to predict who would benefit from shorter courses of immunotherapy. Here, we outline key questions related to health, financial and societal toxicities of over treating with ICI and present four unique clinical trials aimed at exposing criteria for early cessation of ICI. Taken together, there is a serious liability to overtreating patients with ICI and future work is warranted to determine when it is safe to stop ICI.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Neoplasias/tratamiento farmacológico , Ensayos Clínicos como Asunto , Esquema de Medicación , Medicina Basada en la Evidencia , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/inmunología , Neoplasias/mortalidad , Neoplasias/patología , Seguridad del Paciente , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...