Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 12(9)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36143447

RESUMEN

Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night-day interphase and peaking at 14.63 h. Similarly, DA and DOPAC's spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.

2.
Sci Rep ; 12(1): 8140, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581326

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares
3.
J Circadian Rhythms ; 19: 9, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326881

RESUMEN

The purpose of this study was to analyze the light-dark variations in the concentrations of several neurotransmitters in the lumbar spinal cord of rats. Six groups of male Wistar rats were exposed to a 12 h light-12 h dark cycle for 70 days. At different time points of the experimental day (8, 12, 16, 20, 24 and 4 h), one of the groups of rats was randomly selected to be sacrificed, and the spinal cords were removed. The gamma-aminobutyric acid (GABA), glutamate (GLU), dopamine, serotonin, epinephrine (E), and norepinephrine (NE) levels in each extracted spinal cord were measured with high-pressure liquid chromatography (HPLC)-EQ and HPLC-fluorescence systems. Our results indicate that the spinal concentrations of GABA and GLU showed sinusoidal variation in a 24 h cycle, with the highest peak in the dark period (~20 h). Dopamine and serotonin also fluctuated in concentration but peaked in the light period (between 8 and 12 h), while E and NE concentrations showed no significant fluctuations. The possible relationship between neurotransmitter spinal concentration and sensitivity to pain and locomotor activity is discussed. It was concluded that most of the neurotransmitter levels in the lumbar spinal cord showed circadian fluctuations coupled to a light-dark cycle.

4.
Neurosci Res ; 170: 50-58, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32987088

RESUMEN

Primary afferent fibers express extrasynaptic GABAA and GABAB receptors in the axons and soma. However, whether these receptors are tonically activated by ambient GABA and the source of the neurotransmitter is presently unknown. Here, we show that GABA release from dorsal root ganglia (DRG) does not depend on extracellular calcium, but depends upon calcium released from intracellular stores, and is mediated by Best1 channels. Using a preparation consisting of the spinal nerve in continuity with the DRG and the dorsal root, we found that endogenous GABA tonically activates GABA receptors, depressing the excitability of the primary afferents. In addition, using HPLC we found that GABA is released in the DRG, and by immunofluorescence microscopy we show the presence of GABA, the Best1 channel, and some enzymes of the putrescine pathway of GABA biosynthesis, in glutamine synthase- and GFAP-positive satellite glial cells. Last, we found that the blockade of the Best1 channel activity reduced the excitability of primary afferents and prevented the activation of the GABA receptors. These results suggest that satellite glial cells may be the source of endogenous GABA released in the DRG via Best1 channels, which tonically activates extrasynaptic GABA receptors.


Asunto(s)
Neuronas Aferentes , Ácido gamma-Aminobutírico , Axones , Ganglios Espinales , Neuroglía , Receptores de GABA-A
5.
Biochem Biophys Res Commun ; 524(1): 255-261, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31983427

RESUMEN

Neurotransmission is one of the most important processes in neuronal communication and depends largely on Ca2+ entering synaptic terminals through voltage-gated Ca2+ (CaV) channels. Although the contribution of L-type CaV channels in neurotransmission has not been unambiguously established, increasing evidence suggests a role for these proteins in noradrenaline, dopamine, and GABA release. Here we report the regulation of L-type channels by Cdk5, and its possible effect on GABA release in the substantia nigra pars reticulata (SNpr). Using patch-clamp electrophysiology, we show that Cdk5 inhibition by Olomoucine significantly increases current density through CaV1.3 (L-type) channels heterologously expressed in HEK293 cells. Likewise, in vitro phosphorylation showed that Cdk5 phosphorylates residue S1947 in the C-terminal region of the pore-forming subunit of CaV1.3 channels. Consistent with this, the mutation of serine into alanine (S1947A) prevented the regulation of Cdk5 on CaV1.3 channel activity. Our data also revealed that the inhibition of Cdk5 increased the frequency of high K+-evoked miniature inhibitory postsynaptic currents in rat SNpr neurons, acting on L-type channels. These results unveil a novel regulatory mechanism of GABA release in the SNpr that involves a direct action of Cdk5 on L-type channels.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Potenciales Postsinápticos Inhibidores , Neostriado/metabolismo , Receptores de GABA-A/metabolismo , Sustancia Negra/metabolismo , Animales , Animales Recién Nacidos , Canales de Calcio Tipo L/química , Células HEK293 , Humanos , Masculino , Fosforilación , Ratas Wistar , Ácido gamma-Aminobutírico/metabolismo
6.
Biomolecules ; 9(10)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547016

RESUMEN

In vivo activation of dopamine D3 receptors (D3Rs) depresses motor activity. D3Rs are widely expressed in subthalamic, striatal, and dendritic dopaminergic inputs into the substantia nigra pars reticulata (SNr). In vitro studies showed that nigral D3Rs modulate their neurotransmitter release; thus, it could be that these changes in neurotransmitter levels modify the discharge of nigro-thalamic neurons and, therefore, motor behavior. To determine how the in vitro responses correspond to the in vivo responses, we examined the effect of intra-nigral and systemic blockade of D3Rs in the interstitial content of glutamate, dopamine, and GABA within the SNr using microdialysis coupled to motor activity determinations in freely moving rats. Intranigral unilateral blockade of D3R with GR 103,691 increased glutamate, dopamine, and GABA. Increments correlated with increased ambulatory distance, non-ambulatory activity, and induced contralateral turning. Concomitant blockade of D3R with D1R by perfusion of SCH 23390 reduced the increase of glutamate; prevented the increment of GABA, but not of dopamine; and abolished behavioral effects. Glutamate stimulates dopamine release by NMDA receptors, while blockade with kynurenic acid prevented the increase in dopamine and, in turn, of GABA and glutamate. Finally, systemic administration of D3R selective antagonist U 99194A increased glutamate, dopamine, and GABA in SNr and stimulated motor activity. Blockade of intra-nigral D1R with SCH 23390 prior to systemic U 99194A diminished increases in neurotransmitter levels and locomotor activity. These data highlight the pivotal role of presynaptic nigral D3 and D1R in the control of motor activity and help to explain part of the effects of the in vivo administration of D3R agents.


Asunto(s)
Compuestos de Bifenilo/administración & dosificación , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Piperazinas/administración & dosificación , Sustancia Negra/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Benzazepinas/administración & dosificación , Benzazepinas/farmacología , Compuestos de Bifenilo/farmacología , Locomoción/efectos de los fármacos , Masculino , Microdiálisis , Piperazinas/farmacología , Ratas , Receptores de Dopamina D3/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/efectos de los fármacos
7.
Biomolecules ; 9(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480516

RESUMEN

Extensive damage to nigrostriatal dopaminergic neurons leads to Parkinson's disease (PD). To date, the most effective treatment has been administration of levodopa (L-DOPA) to increase dopaminergic tone. This treatment leads to responses that vary widely among patients, from predominantly beneficial effects to the induction of disabling, abnormal movements (L-DOPA induced dyskinesia (LID)). Similarly, experimental studies have shown animals with widely different degrees of LID severity. In this study, unilateral injections of 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle (MFB) produced more than 90% depletion of dopamine in both the striatum and the substantia nigra reticulata (SNr) of rats. Population analysis showed that dopamine depletion levels were clustered in a single population. In contrast, analysis of abnormal involuntary movements (AIMs) induced by L-DOPA treatment of 6-OHDA-lesioned animals yielded two populations: one with mild LID, and the other with severe LID, which are also related to different therapeutic responses. We examined whether the severity of LID correlated with changes in dopamine 3 receptor (D3R) signaling because of the following: (a) D3R expression and the induction of LID are strongly correlated; and (b) dopaminergic denervation induces a qualitative change in D3R signaling in the SNr. We found that the effects of D3R activation on cAMP accumulation and depolarization-induced [3H]-gamma-aminobutyric acid ([3H]-GABA) release were switched. L-DOPA treatment normalized the denervation-induced changes in animals with mild LID. The D3R activation caused depression of both dopamine 1 receptor (D1R)-induced increases in cAMP production and depolarization-induced [3H]-GABA release, which were reversed to their pre-denervation state. In animals with severe LID, none of the denervation-induced changes were reversed. The finding that in the absence of identifiable differences in 6-OHDA and L-DOPA treatment, two populations of animals with different D3R signaling and LIDs severity implies that mechanisms intrinsic to the treated subject determine the segregation.


Asunto(s)
Discinesias/etiología , Discinesias/metabolismo , Levodopa/efectos adversos , Levodopa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Animales , AMP Cíclico/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Masculino , Haz Prosencefálico Medial/efectos de los fármacos , Haz Prosencefálico Medial/metabolismo , Oxidopamina/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA