Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Methods Mol Biol ; 2758: 151-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549013

RESUMEN

Neuropeptides and peptide hormones are signaling molecules produced via complex posttranslational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a well-validated methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.


Asunto(s)
Neuropéptidos , Proteómica , Perfilación de la Expresión Génica , Hormonas/metabolismo , Biología Computacional/métodos , Neuropéptidos/genética , Neuropéptidos/metabolismo
2.
Gene ; 910: 148329, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38431234

RESUMEN

DNA methylation is an epigenetic modification that can alter gene expression, and the incidence can vary across developmental stages, inflammatory conditions, and sexes. The effects of viral maternal viral infection and sex on the DNA methylation patterns were studied in the hypothalamus of a pig model of immune activation during development. DNA methylation at single-base resolution in regions of high CpG density was measured on 24 individual hypothalamus samples using reduced representation bisulfite sequencing. Differential over- and under-methylated sites were identified and annotated to proximal genes and corresponding biological processes. A total of 120 sites were differentially methylated (FDR-adjusted p-value < 0.05) between maternal infection or sex groups. Among the 66 sites differentially methylated between groups exposed to inflammatory signals and control, most sites were over-methylated in the challenged group and included sites in the promoter regions of genes SIRT3 and NRBP1. Among the 54 differentially methylated sites between females and males, most sites were over-methylated in females and included sites in the promoter region of genes TNC and EIF4G1. The analysis of the genes proximal to the differentially methylated sites suggested that biological processes potentially impacted include immune response, neuron migration and ensheathment, peptide signaling, adaptive thermogenesis, and tissue development. These results suggest that translational studies should consider that the prolonged effect of maternal infection during gestation may be enacted through epigenetic regulatory mechanisms that may differ between sexes.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Masculino , Femenino , Animales , Porcinos , Islas de CpG , Epigenómica/métodos , Hipotálamo/metabolismo
3.
Physiol Genomics ; 56(4): 343-359, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38189117

RESUMEN

The hypothalamic molecular processes participate in the regulation of the neuro-immune-endocrine system, including hormone, metabolite, chemokine circulation, and corresponding physiological and behavioral responses. RNA-sequencing profiles were analyzed to understand the effect of juvenile immune and metabolic distress 100 days after virally elicited maternal immune activation during gestation in pigs. Over 1,300 genes exhibited significant additive or interacting effects of gestational immune activation, juvenile distress, and sex. One-third of these genes presented multiple effects, emphasizing the complex interplay of these factors. Key functional categories enriched among affected genes included sensory perception of pain, steroidogenesis, prolactin, neuropeptide, and inflammatory signaling. These categories underscore the intricate relationship between gestational immune activation during gestation, distress, and the response of hypothalamic pathways to insults. These effects were sex-dependent for many genes, such as Prdm12, Oprd1, Isg20, Prl, Oxt, and Vip. The prevalence of differentially expressed genes annotated to proinflammatory and cell cycle processes suggests potential implications for synaptic plasticity and neuronal survival. The gene profiles affected by immune activation, distress, and sex pointed to the action of transcription factors SHOX2, STAT1, and REST. These findings underscore the importance of considering sex and postnatal challenges when studying causes of neurodevelopmental disorders and highlight the complexity of the "two-hit" hypothesis in understanding their etiology. Our study furthers the understanding of the intricate molecular responses in the hypothalamus to gestational immune activation and subsequent distress, shedding light on the sex-specific effects and the potential long-lasting consequences on pain perception, neuroendocrine regulation, and inflammatory processes.NEW & NOTEWORTHY The interaction of infection during gestation and insults later in life influences the molecular mechanisms in the hypothalamus that participate in pain sensation. The response of the hypothalamic transcriptome varies between sexes and can also affect synapses and immune signals. The findings from this study assist in the identification of agonists or antagonists that can guide pretranslational studies to ameliorate the effects of gestational insults interacting with postnatal challenges on physiological or behavioral disorders.


Asunto(s)
Hormonas , Hipotálamo , Masculino , Femenino , Animales , Porcinos , Hipotálamo/metabolismo , Hormonas/metabolismo , Percepción del Dolor , Dolor/genética , Dolor/metabolismo , Sensación
4.
PLoS One ; 18(10): e0292952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851674

RESUMEN

This study aimed to improve our understanding of how the hypothalamus mediates the effects of prenatal and postnatal challenges on behavior and sensitivity to stimuli. A pig model of virally initiated maternal immune activation (MIA) was used to investigate potential interactions of the prenatal challenge both with sex and with postnatal nursing withdrawal. The hypothalami of 72 females and males were profiled for the effects of MIA and nursing withdrawal using RNA-sequencing. Significant differential expression (FDR-adjusted p value < 0.05) was detected in the profile of 222 genes. Genes involved in the Gene Ontology biological process of regulation of hormone levels tended to be over-expressed in individuals exposed to both challenges relative to individuals exposed to either one challenge, and most of these genes were over-expressed in MIA females relative to males across nursing levels. Differentially expressed genes included Fshb, Ttr, Agrp, Gata3, Foxa2, Tfap2b, Gh1, En2, Cga, Msx1, and Npy. The study also found that prenatal and postnatal challenges, as well as sex, impacted the regulation of neurotransmitter activity and immune effector processes in the hypothalamus. In particular, the olfactory transduction pathway genes were over-expressed in weaned MIA males, and several transcription factors were potentially found to target the differentially expressed genes. Overall, these results highlight how multiple environmental challenges can interact and affect the molecular mechanisms of the hypothalamus, including hormonal, immune response, and neurotransmitter processes.


Asunto(s)
Neuropéptido Y , Efectos Tardíos de la Exposición Prenatal , Masculino , Embarazo , Femenino , Animales , Humanos , Porcinos , Neuropéptido Y/metabolismo , Hipotálamo/metabolismo , Vitaminas/metabolismo , Neurotransmisores/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo
5.
Metabolites ; 13(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623825

RESUMEN

Prenatal stress often results in maternal immune activation (MIA) that can impact prenatal brain development, molecular processes, and substrates and products of metabolism that participate in physiological processes at later stages of life. Postnatal metabolic and immunological stressors can affect brain metabolites later in life, independently or in combination with prenatal stressors. The effects of prenatal and postnatal stressors on hippocampal metabolites were studied using a pig model of viral MIA exposed to immunological and metabolic stressors at 60 days of age using gas chromatography mass spectrometry. Postnatal stress and MIA elicited effects (FDR-adjusted p-value < 0.1) on fifty-nine metabolites, while eight metabolites exhibited an interaction effect. The hippocampal metabolites impacted by MIA or postnatal stress include 4-aminobutanoate (GABA), adenine, fumarate, glutamate, guanine, inosine, ornithine, putrescine, pyruvate, and xanthine. Metabolites affected by MIA or postnatal stress encompassed eight significantly (FDR-adjusted p-value < 0.1) enriched Kyoto Encyclopedia of Genes and Genomes Database (KEGG) pathways. The enriched arginine biosynthesis and glutathione metabolism pathways included metabolites that are also annotated for the urea cycle and polyamine biosynthesis pathways. Notably, the prenatal and postnatal challenges were associated with disruption of the glutathione metabolism pathway and changes in the levels of glutamic acid, glutamate, and purine nucleotide metabolites that resemble patterns elicited by drugs of abuse and may underlie neuroinflammatory processes. The combination of MIA and postnatal stressors also supported the double-hit hypothesis, where MIA amplifies the impact of stressors later in life, sensitizing the hippocampus of the offspring to future challenges. The metabolites and pathways characterized in this study offer evidence of the role of immunometabolism in understanding the impact of MIA and stressors later in life on memory, spatial navigation, neuropsychiatric disorders, and behavioral disorders influenced by the hippocampus.

6.
Genes (Basel) ; 14(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37239367

RESUMEN

Immune challenges during gestation are associated with neurodevelopmental disorders and can interact with stress later in life. The pituitary gland participates in endocrine- and immune-related processes that influence development, growth, and reproduction and can modulate physiological and behavioral responses to challenges. The objective of this study was to investigate the effect of stressors at different time points on the molecular mechanisms of the pituitary gland and detect sex differences. RNA sequencing was used to profile the pituitary glands of female and male pigs exposed to weaning stress and virally induced maternal immune activation (MIA), relative to unchallenged groups. Significant effects (FDR-adjusted p-value < 0.05) of MIA and weaning stress were detected in 1829 and 1014 genes, respectively. Of these, 1090 genes presented significant interactions between stressors and sex. The gene ontology biological process of the ensheathment of neurons (GO:0007272), substance abuse, and immuno-related pathways, including the measles disease (ssc05162), encompasses many genes with profiles impacted by MIA and weaning stress. A gene network analysis highlighted the under-expression of myelin protein zero (Mpz) and inhibitors of DNA binding 4 (Id4) among the non-stressed males exposed to MIA, relative to the control and non-MIA males exposed to weaning stress, relative to non-stressed pigs. The detection of changes in the molecular mechanisms of the pituitary gland could advance our understanding of disruptions in the formation of the myelin sheath and the transmission of neuron-to-neuron signals in behavioral disorders associated with maternal immune activation and stress.


Asunto(s)
Trastornos Mentales , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Masculino , Animales , Porcinos , Hipófisis , Reproducción
7.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36848195

RESUMEN

Subfertility represents one major challenge to enhancing dairy production and efficiency. Herein, we use a reproductive index (RI) expressing the predicted probability of pregnancy following artificial insemination (AI) with Illumina 778K genotypes to perform single and multi-locus genome-wide association analyses (GWAA) on 2,448 geographically diverse U.S. Holstein cows and produce genomic heritability estimates. Moreover, we use genomic best linear unbiased prediction (GBLUP) to investigate the potential utility of the RI by performing genomic predictions with cross validation. Notably, genomic heritability estimates for the U.S. Holstein RI were moderate (h2 = 0.1654 ± 0.0317-0.2550 ± 0.0348), while single and multi-locus GWAA revealed overlapping quantitative trait loci (QTL) on BTA6 and BTA29, including the known QTL for the daughter pregnancy rate (DPR) and cow conception rate (CCR). Multi-locus GWAA revealed seven additional QTL, including one on BTA7 (60 Mb) which is adjacent to a known heifer conception rate (HCR) QTL (59 Mb). Positional candidate genes for the detected QTL included male and female fertility loci (i.e. spermatogenesis and oogenesis), meiotic and mitotic regulators, and genes associated with immune response, milk yield, enhanced pregnancy rates, and the reproductive longevity pathway. Based on the proportion of the phenotypic variance explained (PVE), all detected QTL (n = 13; P ≤ 5e - 05) were estimated to have moderate (1.0% < PVE ≤ 2.0%) or small effects (PVE ≤ 1.0%) on the predicted probability of pregnancy. Genomic prediction using GBLUP with cross validation (k = 3) produced mean predictive abilities (0.1692-0.2301) and mean genomic prediction accuracies (0.4119-0.4557) that were similar to bovine health and production traits previously investigated.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Embarazo , Bovinos , Animales , Femenino , Masculino , Fertilidad/genética , Reproducción , Sitios de Carácter Cuantitativo , Genómica , Polimorfismo de Nucleótido Simple
8.
J Racial Ethn Health Disparities ; 10(5): 2513-2527, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36715821

RESUMEN

This study employs multi-level and mixed-methods approaches to examine how structural violence affects the health of low-income, single Black mothers. We use multilevel regression models to examine how feeling "trapped" in racially segregated neighborhoods with high levels of violence on the South Side of Chicago affects mothers' (N = 69) reports of posttraumatic stress disorder and depressive symptoms. The relationship between feeling "trapped" and variations in expression of mRNA for the glucocorticoid receptor gene NR3C1 using microarray assays was also examined. The regression models revealed that feeling "trapped" significantly predicted increased mental distress in the form of PTSD, depressive symptoms, and glucocorticoid receptor gene regulation. The mothers' voices revealed a nuanced understanding about how a lack of financial resources to move out of the neighborhood creates feelings of being "trapped" in dangerous situations.


Asunto(s)
Madres , Trastornos por Estrés Postraumático , Femenino , Humanos , Receptores de Glucocorticoides , Depresión/diagnóstico , Chicago , Violencia
9.
Genes (Basel) ; 13(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36011282

RESUMEN

The influence of proinflammatory challenges, such as maternal immune activation (MIA) or postnatal exposure to drugs of abuse, on brain molecular pathways has been reported. On the other hand, the simultaneous effects of MIA and drugs of abuse have been less studied and sometimes offered inconsistent results. The effects of morphine exposure on a pig model of viral-elicited MIA were characterized in the prefrontal cortex of males and females using RNA-sequencing and gene network analysis. Interacting and main effects of morphine, MIA, and sex were detected in approximately 2000 genes (false discovery rate-adjusted p-value < 0.05). Among the enriched molecular categories (false discovery rate-adjusted p-value < 0.05 and −1.5 > normalized enrichment score > 1.5) were the cell adhesion molecule pathways associated with inflammation and neuronal development and the long-term depression pathway associated with synaptic strength. Gene networks that integrate gene connectivity and expression profiles displayed the impact of morphine-by-MIA interaction effects on the pathways. The cell adhesion molecules and long-term depression networks presented an antagonistic effect between morphine and MIA. The differential expression between the double-challenged group and the baseline saline-treated Controls was less extreme than the individual challenges. The previous findings advance the knowledge about the effects of prenatal MIA and postnatal morphine exposure on the prefrontal cortex pathways.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Analgésicos Opioides/farmacología , Animales , Femenino , Humanos , Inflamación/metabolismo , Masculino , Derivados de la Morfina/metabolismo , Corteza Prefrontal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Porcinos , Vitaminas
10.
Front Microbiol ; 13: 926592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755999

RESUMEN

Cover cropping (CC) is a promising in-field practice to mitigate soil health degradation and nitrogen (N) losses from excessive N fertilization. Soil N-cycling microbial communities are the fundamental drivers of these processes, but how they respond to CC under field conditions is poorly documented for typical agricultural systems. Our objective was to investigate this relationship for a long-term (36 years) corn [Zea mays L.] monocultures under three N fertilizer rates (N0, N202, and N269; kg N/ha), where a mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa Roth.] was introduced for two consecutive years, using winter fallows as controls (BF). A 3 × 2 split-plot arrangement of N rates and CC treatments in a randomized complete block design with three replications was deployed. Soil chemical and physical properties and potential nitrification (PNR) and denitrification (PDR) rates were measured along with functional genes, including nifH, archaeal and bacterial amoA, nirK, nirS, and nosZ-I, sequenced in Illumina MiSeq system and quantified in high-throughput quantitative polymerase chain reaction (qPCR). The abundances of nifH, archaeal amoA, and nirS decreased with N fertilization (by 7.9, 4.8, and 38.9 times, respectively), and correlated positively with soil pH. Bacterial amoA increased by 2.4 times with CC within N269 and correlated positively with soil nitrate. CC increased the abundance of nirK by 1.5 times when fertilized. For both bacterial amoA and nirK, N202 and N269 did not differ from N0 within BF. Treatments had no significant effects on nosZ-I. The reported changes did not translate into differences in functionality as PNR and PDR did not respond to treatments. These results suggested that N fertilization disrupts the soil N-cycling communities of this system primarily through soil acidification and high nutrient availability. Two years of CC may not be enough to change the N-cycling communities that adapted to decades of disruption from N fertilization in corn monoculture. This is valuable primary information to understand the potentials and limitations of CC when introduced into long-term agricultural systems.

11.
Front Nutr ; 9: 791141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35548563

RESUMEN

No studies, to date, have scrutinized the role of a priori dietary patterns on prognosis following a head and neck squamous cell carcinoma (HNSCC) diagnosis. The purpose of this analysis was to evaluate the associations between adherence to six a priori defined diet quality indices (including AHEI-2010, aMED, DASH, and three low-carbohydrate indices) throughout the first 3 years of observation and all-cause and cancer-specific mortalities in 468 newly diagnosed HNSCC patients from the University of Michigan Head and Neck Specialized Program of Research Excellence (UM-SPORE). The dietary intake data were measured using a food frequency questionnaire administered at three annual time points commencing at study entry. Deaths and their causes were documented throughout the study using various data sources. Marginal structural Cox proportional hazards models were used to evaluate the role of diet quality, as a time-varying covariate, on mortality. There were 93 deaths from all causes and 74 cancer-related deaths adjudicated throughout the observation period. There was a strong inverse association between adherence to the AHEI-2010, all-cause mortality (HR Q5-Q1 :0.07, 95% CI:0.01-0.43, p trend:0.04), and cancer-specific mortality (HR Q5-Q1 :0.15, 95% CI:0.02-1.07, p trend:0.04). Other more modest associations were noted for the low-carbohydrate indices. In sum, higher adherence to the AHEI-2010 and a plant-based low-carbohydrate index throughout the first 3 years since diagnosis may bolster survival and prognosis in newly diagnosed patients with HNSCC.

12.
Vet Sci ; 9(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35622775

RESUMEN

The impact of evolution and domestication processes on the sequences of neuropeptide prohormone genes that participate in cell-cell signaling influences multiple biological process that involve neuropeptide signaling. This information is important to understand the physiological differences between Cetartiodactyla domesticated species such as cow, pig, and llama and wild species such as hippopotamus, giraffes, and whales. Systematic analysis of changes associated with evolutionary and domestication forces in neuropeptide prohormone protein sequences that are processed into neuropeptides was undertaken. The genomes from 118 Cetartiodactyla genomes representing 22 families were mined for 98 neuropeptide prohormone genes. Compared to other Cetartiodactyla suborders, Ruminantia preserved PYY2 and lost RLN1. Changes in GNRH2, IAPP, INSL6, POMC, PRLH, and TAC4 protein sequences could result in the loss of some bioactive neuropeptides in some families. An evolutionary model suggested that most neuropeptide prohormone genes disfavor sequence changes that incorporate large and hydrophobic amino acids. A compelling finding was that differences between domestic and wild species are associated with the molecular system underlying 'fight or flight' responses. Overall, the results demonstrate the importance of simultaneously comparing the neuropeptide prohormone gene complement from close and distant-related species. These findings broaden the foundation for empirical studies about the function of the neuropeptidome associated with health, behavior, and food production.

13.
Genes (Basel) ; 13(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35627199

RESUMEN

Neurogenomic changes induced by maternal immune activation (MIA) during gestation and the social stress of weaning can alter brain plasticity in the hippocampus of offspring. The present study furthers the understanding of how these stressors impact hippocampus gene networks. The hippocampus transcriptome was profiled in pigs that were either exposed to MIA or not and were weaned or nursed. Overall, 1576 genes were differentially expressed (FDR-adjusted p-value < 0.05 and |log2 (fold change between pig groups)| > 1.2) in response to the main and interacting effects of MIA, weaning, and sex. Functional analysis identified 17 enriched immunological and neurological pathways in the Kyoto Encyclopedia of Genes and Genomes database. The enrichment of the terpenoid backbone biosynthesis pathway was characterized by genes under-expressed in MIA relative to non-MIA exposed, males relative to females, and weaned relative to nursed pigs. On the other hand, the enrichment of drug addiction pathways was characterized by gene over-expression in MIA relative to non-exposed pigs. Our results indicate that weaning and sex can modify the effects of MIA on the offspring hippocampus. This knowledge can aid in precise identification of molecular targets to reduce the prolonged effects of pre- and postnatal stressors.


Asunto(s)
Hipocampo , Transcriptoma , Animales , Femenino , Masculino , Porcinos/genética , Terpenos
14.
Biomedicines ; 10(4)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35453627

RESUMEN

Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell-cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3' splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.

15.
J Anim Sci ; 100(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35100391

RESUMEN

Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the chemical composition and standardized amino acid digestibility using the cecectomized rooster model of three selected insect meals (i.e., speckled cockroach [SC], Madagascar hissing cockroach [MC], and superworm [SW]) and to determine the effects of these insect meals on food intake, apparent total tract digestibility (ATTD) of macronutrients, fecal scores, and metabolites of adult cats fed insect- or chicken-based retorted diets. This study consisted of a complete randomized design, with 28 adult cats randomly assigned to one of the four experimental retorted diets: Control (chicken-based diet), SC diet, MC diet, or SW diet. All animal procedures were approved by the University of Illinois Institutional Animal Care and Use Committee. All diets were formulated to be complete and balanced and meet or exceed the nutritional requirements of adult cats. The experimental period was 28 d, with the first 7 d allotted for diet adaptation. The total fecal collection was completed during the last 4 d of the experimental period. On day 21, a fresh fecal sample from each cat was collected for the determination of fecal metabolites and microbiota. Food was offered twice daily to maintain body weight and body condition score. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. ATTD of dry matter, organic matter, acid-hydrolyzed fat, and crude protein did not differ among treatments (P > 0.05), and all diets were well digested by the cats. Similarly, fecal scores did not differ among the treatments and were within ideal range. No differences (P > 0.05) in fecal metabolite concentrations or microbiota diversity were observed among cats fed different experimental diets; only a few genera from Firmicutes and Bacteroidota phyla differ (P < 0.05) in cats fed SW diet in contrast to other dietary treatments. In conclusion, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.


Insect meals are novel and potentially sustainable protein sources. The objectives of this study were to determine the nutrient composition of speckled cockroach, Madagascar hissing cockroach, and superworm (SW) and to determine the effects of these insect meals on food intake, digestibility of macronutrients, fecal scores, metabolites, and microbiota of adult cats fed insect- or chicken-based wet pet foods. Among the three selected insect meals evaluated, oleic acid, palmitic acid, linoleic acid, and stearic acid were the most prevalent fatty acids. Branched-chain amino acids and arginine were the most preponderant indispensable amino acids in these insect meals. All diets were well digested by the cats with no differences observed on macronutrient digestibility. Similarly, fecal scores did not differ among the treatments and were within the ideal range. No differences in fecal metabolite concentrations were observed. Only a few genera from Firmicutes and Bacteroidota phyla differ in cats fed SW diet in contrast to other dietary treatments. Overall, the selected insect meals evaluated herein are rich in linoleic acid, an essential fatty acid for cats. Insect-based retorted diets led to comparable results to those achieved with a chicken-based retorted diet, suggesting that these novel protein sources might be adequate alternative ingredients in feline diets.


Asunto(s)
Digestión , Microbiota , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Gatos , Pollos , Dieta/veterinaria , Heces/química , Insectos , Masculino , Comidas
16.
Genes (Basel) ; 14(1)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36672818

RESUMEN

The hippocampus participates in spatial navigation and behavioral processes, displays molecular plasticity in response to environmental challenges, and can play a role in neuropsychiatric diseases. The combined effects of inflammatory prenatal and postnatal challenges can disrupt the hippocampal gene networks and regulatory mechanisms. Using a proven pig model of viral maternal immune activation (MIA) matched to controls and an RNA-sequencing approach, the hippocampal transcriptome was profiled on two-month-old female and male offspring assigned to fasting, mimetic viral, or saline treatments. More than 2600 genes presented single or combined effects (FDR-adjusted p-value < 0.05) of MIA, postnatal stress, or sex. Biological processes and pathways encompassing messenger cyclic adenosine 3',5'-monophosphate (cAMP) signaling were enriched with genes including gastric inhibitory polypeptide receptor (GIPR) predominantly over-expressed in the MIA-exposed fasting males relative to groups that differed in sex, prenatal or postnatal challenge. While this pattern was amplified in fasting offspring, the postnatal inflammatory challenge appeared to cancel out the effects of the prenatal challenge. The transcription factors C-terminal binding protein 2 (CTBP2), RE1 silencing transcription factor (REST), signal transducer and activator of transcription 1 (STAT1), and SUZ12 polycomb repressive complex 2 subunit were over-represented among the genes impacted by the prenatal and postnatal factors studied. Our results indicate that one environmental challenge can influence the effect of another challenge on the hippocampal transcriptome. These findings can assist in the identification of molecular targets to ameliorate the effects of pre-and post-natal stressors on hippocampal-associated physiology and behavior.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Animales , Masculino , Femenino , Porcinos , Hipocampo , Factores de Transcripción , Vitaminas/farmacología
17.
Genes (Basel) ; 12(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34680965

RESUMEN

Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.


Asunto(s)
Empalme Alternativo/genética , Analgésicos Opioides/efectos adversos , Hiperalgesia/genética , Morfina/efectos adversos , Factores de Transcripción ARNTL/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/patología , Proteínas con Dominio LIM/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de N-Metil-D-Aspartato/genética , Proteínas Represoras/genética , Transducción de Señal/efectos de los fármacos , Sinapsis/genética , Ganglio del Trigémino/metabolismo
18.
J Anim Sci ; 99(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718604

RESUMEN

Garbanzo beans (GB; Cicer arietinum) are a readily available pulse crop that have gained popularity as a plant-based protein source in the pet food industry. However, raw GB contain anti-nutritional factors that can reduce digestibility and cause digestive upsets in pets that are undesirable to owners. The objective of this study was to determine the effects of the inclusion of raw or cooked GB in extruded feline diets on macronutrient digestibility, gastrointestinal tolerance, and fermentative end-products in cats. Five diets were formulated to contain raw GB at 0%, 7.5%, 15%, or 30% or cooked GB at 30%. Ten adult, male cats (mean age: 1.0 ± 0.0 yr, mean BW: 4.7 ± 0.4 kg) were used in a replicated 5 × 5 Latin square design. Each period consisted of 14 d, with 10 d of diet adaptation followed by 4 d of total fecal and urine collection. At the end of each period, 4 mL of blood were collected and analyzed for a serum chemistry and complete blood count to ensure all animals remained healthy throughout the study. Cats were fed twice daily and food intake was calculated to maintain body weight. Food intake was highest (P < 0.05) for cats fed 0% raw GB (72.2 g/d, dry matter basis [DMB]) compared with GB inclusions of 7.5% or greater (average 70.3 g/d, DMB). Dry matter and organic matter apparent total tract digestibility (ATTD) were lowest (P < 0.05) for cats consuming the 30% cooked GB diet (77.3% and 81.7%, respectively). Cats fed 7.5% raw GB had greater (P < 0.05) crude protein ATTD (86.2%) than cats fed 15% raw GB (82.3%) or 30% cooked GB (81.6%). Total short-chain fatty acid concentrations were highest (P < 0.05) for 30% cooked GB at 682 µmol/g but not different (P > 0.05) than 15% GB (528 µmol/g) or 30% raw GB (591 µmol/g) diets. In terms of fecal microbial abundance, the predominant phyla were Firmicutes, Bacteroidota, and Actinobacteria. Cats fed the 0% GB diet had a greater relative abundance of Firmicutes (62.1%) and Fusobacteria (4.0%) than the remaining diets (average 54% and 1.6%, respectively). In conclusion, all inclusion levels of raw GB resulted in high digestibility (average > 80%) and ideal fecal scores (average 2.9), demonstrating their adequacy as a protein source in feline diets up to a 30% inclusion level.


Asunto(s)
Cicer , Microbiota , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Gatos , Dieta/veterinaria , Digestión , Heces , Masculino
19.
Front Mol Biosci ; 8: 660764, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336923

RESUMEN

Weaning wields environmental, social, and nutritional stresses that are detectable in the blood metabolite levels of the offspring. Prenatal stress in the form of maternal immune activation (MIA) in response to infection, which is associated with health and behavior disorders, also elicits prolonged changes in blood and brain cytokine and metabolite levels of the offspring. The goal of this study was to investigate the effects of weaning and MIA on the offspring's liver function to advance the understanding of the impact of stressors on peripheral and central nervous systems, physiology, and health. Gas chromatography-mass spectrometry analysis was used to compare the level of hepatic metabolites from 22-day-old pigs (n = 48) evenly distributed among weaning (nursed or weaned), viral MIA exposure (yes or no), and sexes. Weaning effects were detected on 38 metabolites at p-value < 0.05 (28 metabolites at FDR p-value < 0.05), and sex-dependent MIA effects were detected on 11 metabolites. Multiple intermediate and final products of the enriched (FDR p-value < 0.05) glycolysis and gluconeogenesis and pentose phosphate pathways were over-abundant in nursed relative to weaned pigs. The enriched pathways confirm the impact of weaning on hepatic metabolic shift, oxidative stress, and inflammation. Higher levels of the glucogenic amino acid histidine are observed in pigs exposed to MIA relative to controls, suggesting that the role of this metabolite in modulating inflammation may supersede the role of this amino acid as an energy source. The lower levels of cholesterol detected in MIA pigs are consistent with hypocholesterolemia profiles detected in individuals with MIA-related behavior disorders. Our findings underline the impact of weaning and MIA stressors on hepatic metabolites that can influence peripheral and central nervous system metabolic products associated with health and behavior disorders.

20.
Animals (Basel) ; 11(8)2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34438732

RESUMEN

Weaning stress can elicit changes in the metabolic, hormone and immune systems of pigs and interact with prolonged disruptions stemming from maternal immune activation (MIA) during gestation. The present study advances the characterization of the combined effects of weaning stress and MIA on blood chemistry, immune and hormone indicators that inform on the health of pigs. Three-week-old female and male offspring of control gilts or gilts infected with the porcine reproductive and respiratory syndrome virus were allocated to weaned or nursed groups. The anion gap and bilirubin profiles suggest that MIA enhances tolerance to the effects of weaning stress. Interleukin 1 beta and interleukin 2 were highest among weaned MIA females, and cortisol was higher among weaned relative to nursed pigs across sexes. Canonical discriminant analysis demonstrated that weaned and nursed pigs have distinct chemistry profiles, whereas MIA and control pigs have distinct cytokine profiles. The results from this study can guide management practices that recognize the effects of the interaction between MIA and weaning stress on the performance and health of pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA