Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446756

RESUMEN

Films and fibers of syndiotactic polystyrene (sPS), being amorphous or exhibiting nanoporous crystalline (NC) or dense crystalline phases, were loaded with salicylic acid (SA), a relevant non-volatile antimicrobial molecule. In the first section of the paper, sPS/SA co-crystalline (CC) δ form is characterized, mainly by wide angle X-ray diffraction (WAXD) patterns and polarized Fourier transform infrared (FTIR) spectra. The formation of sPS/SA δ CC phases allows the preparation of sPS fibers even with a high content of the antibacterial guest, which is also retained after repeated washing procedures at 65 °C. A preparation procedure starting from amorphous fibers is particularly appropriate because involves a direct formation of the CC δ form and a simultaneous axial orientation. The possibility of tuning drug amount and release kinetics, by simply selecting suitable crystalline phases of a commercially available polymer, makes sPS fibers possibly useful for many applications. In particular, fibers with δ CC forms, which retain SA molecules in their crystalline phases, could be useful for antimicrobial textiles and fabrics. Fibers with the dense γ form which easily release SA molecules, because they are only included in their amorphous phases, could be used for promising SA-based preparations for antibacterial purposes in food processing and preservation and public health. Finally, using a cell-based assay system and antibacterial tests, we investigated the cellular activity, toxicity and antimicrobial properties of amorphous, δ CC forms and dense γ form of sPS fibers loaded with different contents of SA.


Asunto(s)
Poliestirenos , Ácido Salicílico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Poliestirenos/química , Difracción de Rayos X , Antibacterianos/farmacología
2.
J Med Chem ; 65(21): 14456-14480, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318728

RESUMEN

The design of multitarget drugs represents a promising strategy in medicinal chemistry and seems particularly suitable for the discovery of anti-inflammatory drugs. Here, we describe the identification of an indoline-based compound inhibiting both 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH). In silico analysis of an in-house library identified nine compounds as potential 5-LOX inhibitors. Enzymatic and cellular assays revealed the indoline derivative 43 as a notable 5-LOX inhibitor, guiding the design of new analogues. These compounds underwent extensive in vitro investigation revealing dual 5-LOX/sEH inhibitors, with 73 showing the most promising activity (IC50s of 0.41 ± 0.01 and 0.43 ± 0.10 µM for 5-LOX and sEH, respectively). When challenged in vivo in zymosan-induced peritonitis and experimental asthma in mice, compound 73 showed remarkable anti-inflammatory efficacy. These results pave the way for the rational design of 5-LOX/sEH dual inhibitors and for further investigation of their potential use as anti-inflammatory agents.


Asunto(s)
Antiinflamatorios , Epóxido Hidrolasas , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Indoles/farmacología , Indoles/uso terapéutico , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/uso terapéutico , Inhibidores de la Lipooxigenasa/química
3.
Heliyon ; 8(11): e11568, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36406731

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an RNA virus identified as the cause of the coronavirus outbreak in December 2019 (COVID-19). Like all the RNA viruses, SARS-CoV-2 constantly evolves through mutations in its genome, accumulating 1-2 nucleotide changes every month, giving the virus a selective advantage through enhanced transmissibility, greater pathogenicity, and the possibility of circumventing immunity previously acquired by an individual either by natural infection or by vaccination. Several SARS-CoV-2 variants of concern (VoC) have been identified, among which we find Alpha (Lineage B.1.1.7), Beta (Lineage B.1.351), and Gamma (Lineage P.1) variants. Most of the mutations occur in the spike (S) protein, a surface glycoprotein that plays a crucial role in viral infection; the S protein binds the host cell receptor, the angiotensin-converting enzyme of type 2 (ACE2) via the receptor binding domain (RBD) and catalyzes the fusion of the viral membrane with the host cell. In this work, we present the development of a simplified system that would afford to study the change in the SARS-CoV-2 S RBD/ACE2 binding related to the frequent mutations. In particular, we synthesized and studied the structure of short amino acid sequences, mimicking the two proteins' critical portions. Variations in the residues were easily managed through the one-point alteration of the sequences. Nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopies provide insights into ACE2 and SARS-CoV-2 S RBD structure with its related three variants (Alpha, Beta, and Gamma). Spectroscopy data supported by molecular dynamics lead to the description of an ACE2/RBD binding model in which the effect of a single amino acid mutation in changing the binding of S protein to the ACE2 receptor is predictable.

4.
Biomedicines ; 10(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36009556

RESUMEN

Parkinson's disease (PD) represents one of the most common neurodegenerative disorders, characterized by a dopamine (DA) deficiency in striatal synapses and misfolded toxic α-synuclein aggregates with concomitant cytotoxicity. In this regard, the misfolded proteins accumulation in neurodegenerative disorders induces a remarkable perturbations of endoplasmic reticulum (ER) homeostasis leading to persistent ER stress, which in turn, effects protein synthesis, modification, and folding quality control. A large body of evidence suggests that natural products target the ER stress signaling pathway, exerting a potential action in cancers, diabetes, cardiovascular and neurodegenerative diseases. This study aims to assess the neuroprotective effect of cocoa extract and its purified fractions against a cellular model of Parkinson's disease represented by 6-hydroxydopamine (6-OHDA)-induced SH-SY5Y human neuroblastoma. Our findings demonstrate, for the first time, the ability of cocoa to specifically targets PERK sensor, with significant antioxidant and antiapoptotic activities as both crude and fractioning extracts. In addition, cocoa also showed antiapoptotic properties in 3D cell model and a notable ability to inhibit the accumulation of α-synuclein in 6-OHDA-induced cells. Overall, these results indicate that cocoa exerts neuroprotective effects suggesting a novel possible strategy to prevent or, at least, mitigate neurodegenerative disorders, such as PD.

5.
Pharmaceutics ; 14(3)2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35336055

RESUMEN

The supramolecular structure in peptides' prolonged-released gel formulations is the most critical parameter for the determination of the pharmaceutical profile of the drug. Here, we report our investigation on lanreotide Autogel as a case study. For the first time, we describe the use of the pulsed field gradient (PFG) diffusion-ordered spectroscopy (DOSY) magic-angle spinning NMR to characterize the supramolecular self-assembly and molecular mobility of different samples of lanreotide Autogel formulations prepared according to different formulation protocols. The diffusion coefficient was used to calculate the hydrodynamic radii of supramolecular assemblies and build relative molecular models. DOSY data were integrated with NMR imaging (MRI) measurements and atomic force microscopy (AFM) imaging.

6.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885721

RESUMEN

N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives' (compounds 2a-m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.


Asunto(s)
Adenosina/química , Antineoplásicos/química , Neoplasias Colorrectales/tratamiento farmacológico , Geraniltranstransferasa/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/genética , Simulación por Computador , Ensayos de Selección de Medicamentos Antitumorales , Geraniltranstransferasa/antagonistas & inhibidores , Células HCT116 , Humanos , Ácido Mevalónico/antagonistas & inhibidores , Ácido Mevalónico/metabolismo , Ácido Mevalónico/farmacología , Ratones , Relación Estructura-Actividad , Interfaz Usuario-Computador
7.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872510

RESUMEN

Ganoderma lucidum or Reishi is recognized as the most potent adaptogen present in nature, and its anti-inflammatory, antioxidant, immunomodulatory and anticancer activities are well known. Moreover, lately, there has been an increasing interest from pharmaceutical companies in antiaging G. lucidum-extract-based formulations. Nevertheless, the pharmacological mechanisms of such adaptogenic and regenerative actions remain unclear. The present investigation aimed to explore its molecular and cellular effects in vitro in epidermal keratinocyte cultures by applying liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) for analysis of ethanol extracts using ganoderic acid-A as a reference compound. The G. lucidum extract showed a keratinocyte proliferation induction accompanied by an increase of cyclic kinase protein expressions, such as CDK2 and CDK6. Furthermore, a noteworthy migration rate increase and activation of tissue remodelling factors, such as matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9), were observed. Finally, the extract showed an antioxidant effect, protecting from H2O2-induced cytotoxicity; preventing activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53 and p21; and reducing the number of apoptotic cells. Our study paves the path for elucidating pharmacological properties of G. lucidum and its potential development as cosmeceutical skin products, providing the first evidence of its capability to accelerate the healing processes enhancing re-epithelialization and to protect cells from free-radical action.

8.
Bioorg Chem ; 98: 103449, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057422

RESUMEN

Farnesyl pyrophosphate synthase (FPPS) is a crucial enzyme for the synthesis of isoprenoids and the key target of nitrogen-containing bisphosphonates (N-BPs). N-BPs are potent and selective FPPS inhibitors that are used in the treatment of bone-related diseases, but have poor pharmacokinetic properties. Given the key role played by FPPS in many cancer-related pathways and the pharmacokinetic limits of N-BPs, hundreds of molecules have been screened to identify new FPPS inhibitors characterized by improved drug-like properties that are useful for broader therapeutic applications in solid, non-skeletal tumours. We have previously shown that N6-isopentenyladenosine (i6A) and its related compound N6-benzyladenosine (2) exert anti-glioma activity by interfering with the mevalonate pathway and inhibiting FPPS. Here, we report the design and synthesis of a panel of N6-benzyladenosine derivatives (compounds 2a-m) incorporating different chemical moieties on the benzyl ring. Compounds 2a-m show in vitro antiproliferative activity in U87MG glioma cells and, analogous to the bisphosphonate FPPS inhibitors, exhibit immunogenic properties in ex vivo γδ T cells from stimulated peripheral blood mononuclear cells (PBMCs). Using saturation transfer difference (STD) and quantitative 1H nuclear magnetic resonance (NMR) experiments, we found that 2f, the N6-benzyladenosine analogue that includes a tertbutyl moiety in the para position of the benzyl ring, is endowed with increased FPPS binding and inhibition compared to the parent compounds i6A and 2. N6-benzyladenosine derivatives, characterized by structural features that are significantly different from those of N-BPs, have been confirmed to be promising chemical scaffolds for the development of non N-BP FPPS inhibitors, exerting combined cytotoxic and immunostimulatory activities.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Resonancia Magnética Nuclear Biomolecular , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
9.
J Pharm Biomed Anal ; 160: 436-442, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30138814

RESUMEN

Cancers affecting the salivary glands have been an increasing incidence. Salivary gland cancer is not detected until it reaches an advanced stage, which would generally result in a poor prognosis and survival rate. Therefore, early detection as well as the screening of high risk populations with precancerous lesions remains an unmet medical need. In the present work, we present a NMR-based metabolomic study of the saliva of patients suffering from salivary gland tumours. Analysis of data was done using a combined approach based on PRICONA quantitative analysis and statistical multivariate analysis. Interestingly, both the analytical methods indicate that individuals affected by parotid tumour have a characteristic metabolomic profile characterized by abnormalities in the concentration of several aminoacids. Among these the most significant are those relative to Alanine and Leucine suggestive of an alteration in the metabolic pathways of glycogenic aminoacids and ketone bodies. Our data, describing the preliminary metabolomics fingerprint of parotid tumour, are consistent with the recent view that oncogenic signalling corresponds to alteration in the metabolism of nutrient pull (Vander Heiden et al., 2009), rather than to a single metabolite.


Asunto(s)
Adenolinfoma/metabolismo , Adenoma Pleomórfico/metabolismo , Metabolómica , Neoplasias de la Parótida/metabolismo , Saliva/metabolismo , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad
10.
J Enzyme Inhib Med Chem ; 33(1): 434-444, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29383954

RESUMEN

Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.


Asunto(s)
Antineoplásicos/farmacología , Carbazoles/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Compuestos de Sulfhidrilo/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbazoles/síntesis química , Carbazoles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
11.
Bioorg Med Chem ; 25(24): 6486-6491, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29100734

RESUMEN

Several derivatives of Santacruzamate-A, a natural product that is structurally related to SAHA, were synthesized to explore the potential of carbamates and oxalylamides as novel biasing element for targeting the catalytic site of zinc-dependent histone deacetylases (HDACs). An additional class of Santacruzamate-A derivatives was synthesized to investigate the influence of the cap group and the linker element on HDAC inhibitory activity. All compounds were evaluated in dose response for their in vitro cytotoxic activity in MTT assay in HCT116 cells. HDAC inhibitory activity was evaluated in vitro by western blot analysis for histone hyperacetylation assay and biochemically for representative human HDACs isoforms. Two novel compounds were identified to exhibit potent time dependent anti proliferative activity. However, unlike hydroxamic acid analogues, the tested Santacruzamate-A derivatives showed no noticeable HDAC inhibitory activity. The ethylcarbamate moiety as unusual zinc-binding group displayed no ability to coordinate the zinc ion and thus, presumably, was not able to reproduce known inhibitor-substrate zinc-binding group interactions with the HDAC catalytic site. This study confirmed that the accommodation of the zinc-binding group is deeply critical of the positioning of the linker and the projection of the cap group toward the different surface pockets of the enzyme.


Asunto(s)
Antineoplásicos/farmacología , Carbamatos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbamatos/síntesis química , Carbamatos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Br J Pharmacol ; 174(14): 2287-2301, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28419419

RESUMEN

BACKGROUND AND PURPOSE: N6 -Isopentenyladenosine (i6A) is a modified nucleoside exerting in vitro and in vivo antiproliferative effects. We previously demonstrated that the actions of i6A correlate with the expression and activity of farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway, which is aberrant in brain cancer. To develop new anti-glioma strategies, we tested related compounds exhibiting greater activity than i6A. EXPERIMENTAL APPROACH: We designed and synthesized i6A derivatives characterized by the introduction of diverse chemical moieties in the N6 position of adenosine and tested for their efficacy in U87 cells and in primary glioma cultures, derived from patients. NMR-based structural analysis, molecular docking calculations and siRNA mediated knockdown were used to clarify the molecular basis of their action, targeting FPPS protein. KEY RESULTS: CM223, the i6A derivative including a benzyl moiety in N6 position of adenine, showed marked activity in selectively targeting glioma cells, but not normal human astrocytes. This was due to induction of intrinsic pathways of apoptosis and inhibition of proliferation, along with blockade of FPPS-dependent protein prenylation, which counteracted oncogenic signalling mediated by EGF receptors. CONCLUSION AND IMPLICATIONS: The biological effects together with structural data on interaction of CM223 with FPPS, provided additional evidence for the correlation of the i6A/CM223 antitumor activity with FPPS modulation. Because the MVA pathway is an important promising target, CM223 and its derivatives should be considered interesting active molecules in antiglioma research.


Asunto(s)
Adenosina/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Ácido Mevalónico/metabolismo , Terpenos/farmacología , Adenosina/análogos & derivados , Adenosina/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Glioma/metabolismo , Glioma/patología , Humanos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Terpenos/síntesis química , Terpenos/química
13.
Curr Top Med Chem ; 17(4): 441-459, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27558677

RESUMEN

BACKGROUND: Synthesis, computational study and biological evaluation of peptidomimetic analogues of FR235222 (3), a natural immunosuppressant and HDAC inhibitor, have been reported. These new compounds, bearing α-hydroxyketone moiety, as more stable zinc binding group (ZBG), were evaluated in vitro as HDAC inhibitors against the human HDACs isoforms 1-9 and in cellular antiproliferative assays on U937 human leukemia cell line. The 1,4-benzodiazepin-2,5-dione (BDZ), capping group and the natural ZBG, (S,R)-2-amino-9-hydroxy-8-oxodecanoic acid (Ahoda), were evaluated in order to probe HDAC inhibition and/or paralogue selectivity. Some of the new derivatives showed an interesting activity against a number of HDAC isozymes. The observed activity profile was rationalized by a computational assisted SAR study, in order to understand how the BDZ classes interact with the enzyme into the catalytic pocket. Despite its poor solubility, compound 17b showed significant antiproliferative profile and HDAC inhibition activity. RESULT: In order to assess how the solubility issue could have affected the biological outcome, bioassay conditions were reproduced and quantification of precipitated particulate material was evaluated by turbidimetric and NMR studies together with physicochemical descriptors prediction. Thus, BDZ 17b has been chosen to be promising lead compounds for further optimization, in order to elucidate molecule- enzyme surface recognition.


Asunto(s)
Benzodiazepinas/química , Inhibidores de Histona Desacetilasas/farmacología , Péptidos Cíclicos/química , Benzodiazepinas/farmacología , Inhibidores de Histona Desacetilasas/química , Humanos , Espectroscopía de Resonancia Magnética , Péptidos Cíclicos/farmacología , Solubilidad , Relación Estructura-Actividad
14.
J Pharm Biomed Anal ; 133: 90-95, 2017 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-27829500

RESUMEN

Antiphospholipid syndrome (APS) is a rheumatic inflammatory chronic autoimmune disease inducing hypercoagulable state associated with vascular thrombosis and pregnancy loss in women. Cardiac, cerebral and vascular strokes in these patients are responsible for reduction in life expectancy. Timely diagnosis and accurate monitoring of disease are decisive to improve the accuracy of therapy. In the present work, we present a NMR-based metabolomic study of blood sera of APS patients. Our data show that individuals suffering APS have a characteristic metabolomic profile with abnormalities associated to the metabolism of methyl group donors, ketone bodies and amino acids. We have identified for the first time the metabolomic fingerprint characterizing APS disease having potential application to improve APS timely diagnosis and appropriate therapeutic approaches.


Asunto(s)
Síndrome Antifosfolípido/sangre , Diagnóstico Precoz , Metabolómica , Síndrome Antifosfolípido/diagnóstico , Estudios de Casos y Controles , Femenino , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Caracteres Sexuales
15.
Sci Rep ; 6: 38846, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004737

RESUMEN

A broad biophysical analysis was performed to investigate the molecular basis of the neuroprotective action of Curcuma longa extracts in Alzheimer's disease. By combining circular dichroism and electron paramagnetic resonance experiments with molecular modeling calculations, the minor components of Curcuma longa extracts, such as demethoxycurcumin (2, DMC), bisdemethoxycurcumin (3, BDMC) and cyclocurcumin (4, CYC), were analyzed in a membrane environment mimicking the phospholipid bilayer. Our study provides the first evidence on the relative role of single curcuminoids interacting with Aß-peptide. When the CYC and curcumin metabolite tetrahydrocurcumin (5, THC) were inserted into an anionic lipid solution, a significant modification of the Aß CD curves was detected. These data were implemented by EPR experiments, demonstrating that CYC reaches the inner part of the bilayer, while the other curcuminoids are localized close to the membrane interface. Computational studies provided a model for the curcuminoid-Aß interaction, highlighting the importance of a constrained "semi-folded" conformation to interact with Aß analogously to the pattern observed in α-helical coiled-coil peptide structures. This combined approach led to a better understanding of the intriguing in vitro and in vivo activity of curcuminoids as anti-Alzheimer agents, paving a new path for the rational design of optimized druggable analogues.


Asunto(s)
Péptidos beta-Amiloides/química , Simulación por Computador , Curcuma/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Fragmentos de Péptidos/química , Extractos Vegetales/química , Curcumina/análogos & derivados , Curcumina/química , Espectroscopía de Resonancia por Spin del Electrón , Humanos
16.
Future Med Chem ; 8(11): 1179-89, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27402297

RESUMEN

BACKGROUND: For long time Alzheimer's disease has been attributed to a cholinergic deficit. More recently, it has been considered dependent on the accumulation of the amyloid beta peptide (Aß), which promotes neuronal loss and impairs neuronal function. Results/methodology: In the present study, using biophysical and biochemical experiments we tested the hypothesis that in addition to its role as a neurotransmitter, acetylcholine may exert its action as an anti-Alzheimer agent through a direct interaction with Aß. CONCLUSION: Our data provide evidence that acetylcholine favors the soluble peptide conformation and exerts a neuroprotective effect against the neuroinflammatory and toxic effects of Aß. The present paper paves the way toward the development of new polyfunctional anti-Alzheimer therapeutics capable of intervening on both the cholinergic transmission and the Aß aggregation.


Asunto(s)
Acetilcolina/metabolismo , Acetilcolina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Colinérgicos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Acetilcolina/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Supervivencia Celular/efectos de los fármacos , Colinérgicos/química , Colinérgicos/metabolismo , Dicroismo Circular , Humanos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Agregado de Proteínas/efectos de los fármacos
17.
Anal Bioanal Chem ; 407(25): 7691-701, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282486

RESUMEN

Gentamicin C antibiotics are important because they are active against many multidrug-resistant Gram-negative bacilli. Unfortunately, their clinical usefulness is limited by their toxicity. Because of the difficulty involved in separating its different components, the US and European pharmacopeias both specify that the composition of gentamicin C should be determined by liquid chromatography with pulsed electrochemical detection. Here, we assess the usefulness of a porous graphitic carbon (PGC) HPLC column for separating the components of gentamicin C, and report chromatographic conditions that enable its direct characterization by PGC chromatography directly coupled to electrospray mass spectrometry. Native major components of gentamicin and impurities in commercial formulations were retained and separated on the PGC column without any need for derivatization, using mobile phases basified with ammonium hydroxide. When coupled with detection by conventional electrospray ion trap mass spectrometry (ESI-IT-MS), several previously reported impurities were detected easily, including the most polar gentamicin impurity, garamine. When operating in full-scan mode, it was possible to identify and quantitate gentamicin-related compounds using injected samples of only a few picograms. Under the described conditions, all analytes were eluted in less than 10 min and the LC-MS analyses exhibited excellent stability and linearity. The method's effectiveness was evaluated by analyzing commercial gentamicin batches and in-house formulations. When the PGC chromatographic system was coupled to an evaporative light-scattering detector, detection limits of 40-70 ng were achieved for various major gentamicin components. The chromatographic method was applied on a semi-preparative scale to purify the five major components.


Asunto(s)
Antibacterianos/química , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos , Gentamicinas/química , Grafito/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Antibacterianos/análisis , Cromatografía Líquida de Alta Presión/economía , Gentamicinas/análisis , Límite de Detección , Porosidad , Espectrometría de Masa por Ionización de Electrospray/economía
19.
Future Med Chem ; 4(11): 1439-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22857533

RESUMEN

Histone deacetylase inhibitors (HDACis) are one of the last frontiers in pharmaceutical research. Several classes of HDACi have been identified. Although more than 20 HDACi are under preclinical and clinical investigation as single agents and in combination therapies against different cancers, just two of them were approved by the US FDA: Zolinza(®) and Istodax(®), both licensed for the treatment of cutaneous T-cell lymphoma, the latter also of peripheral T-cell lymphoma. Since HDAC enzymes act by forming multiprotein complexes (clusters), containing cofactors, the main problem in designing new HDACi is that the inhibition activity evaluated on isolated enzyme isoforms does not match the in vivo outcomes. In the coming years, the research will be oriented toward a better understanding of the functioning of these protein complexes as well as the development of new screening assays, with the final goal to obtain new drug candidates for the treatment of cancer.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Depsipéptidos/farmacología , Depsipéptidos/uso terapéutico , Diseño de Fármacos , Quimioterapia Combinada , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias/enzimología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Vorinostat
20.
Anticancer Agents Med Chem ; 12(4): 407-13, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22043993

RESUMEN

The tumor microenvironment is characterized by a poor circulation which results in the selection of neoplastic cells that can grow or survive under hypoxic conditions. The relationship between hypoxia and histone deacetylase (HDAC) inhibitors has been previously established. In this work we evaluated the effects of novel HDAC inhibitors (the natural peptide FR235222 and three tetrapeptide analogs) in the human breast cancer cell line MDAMB231, cultured under hypoxia (2% O2 ≉ 14 mmHg) or normoxia (20% O2 ≉ 140 mmHg). First, we found that the novel HDAC inhibitors reduced cell proliferation in MDAMB231 cells at an extent which was similar or even higher than that exerted by the classic HDAC inhibitors trichostatin-A and suberoylanilide hydroxamic acid. More interestingly, the antiproliferative effects of the novel HDAC inhibitors were, in general, significantly higher in hypoxic cells than in normoxic controls. Hypoxic MDAMB231 cells expressed high levels of the hypoxia-inducible factor (HIF)-1α and HIF-1α-related genes, such as vascular endothelial growth factor, Bcl-2/E1B 19 kDa interacting protein-3, glucose transporter-1, carbonic anhydrase IX, as determined by Western blot analysis and qRT-PCR. Finally, we found that HIF-1α and HIF-1α-related genes were significantly downregulated by FR235222 and analogs. In conclusion, the identification of novel effects exerted by the HDAC inhibitors, characterized by a strong efficacy in inhibiting the expression of HIF-1α and its related genes, may have important implications in the pharmacological control of several tumors, including breast cancer, characterized by the presence of hypoxia, angiogenesis and metabolic derangements.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Mama/citología , Mama/efectos de los fármacos , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...