Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38636606

RESUMEN

BACKGROUND: IgE-mediated degranulation of mast cells (MCs) provides rapid protection against environmental hazards, including animal venoms. A fraction of tissue-resident MCs intimately associates with blood vessels. These perivascular MCs were reported to extend projections into the vessel lumen and to be the first MCs to acquire intravenously injected IgE, suggesting that IgE loading of MCs depends on their vascular association. OBJECTIVE: We sought to elucidate the molecular basis of the MC-blood vessel interaction and to determine its relevance for IgE-mediated immune responses. METHODS: We selectively inactivated the Itgb1 gene, encoding the ß1 chain of integrin adhesion molecules (ITGB1), in MCs by conditional gene targeting in mice. We analyzed skin MCs for blood vessel association, surface IgE density, and capability to bind circulating antibody specific for MC surface molecules, as well as in vivo responses to antigen administered via different routes. RESULTS: Lack of ITGB1 expression severely compromised MC-blood vessel association. ITGB1-deficient MCs showed normal densities of surface IgE but reduced binding of intravenously injected antibodies. While their capacity to degranulate in response to IgE ligation in vivo was unimpaired, anaphylactic responses to antigen circulating in the vasculature were largely abolished. CONCLUSIONS: ITGB1-mediated association of MCs with blood vessels is key for MC immune surveillance of blood vessel content, but is dispensable for slow steady-state loading of endogenous IgE onto tissue-resident MCs.

3.
Sci Adv ; 10(9): eadk0820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427731

RESUMEN

Chronic and aberrant nucleic acid sensing causes type I IFN-driven autoimmune diseases, designated type I interferonopathies. We found a significant reduction of regulatory T cells (Tregs) in patients with type I interferonopathies caused by mutations in ADAR1 or IFIH1 (encoding MDA5). We analyzed the underlying mechanisms using murine models and found that Treg-specific deletion of Adar1 caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Similarly, knock-in mice with Treg-specific expression of an MDA5 gain-of-function mutant caused apoptosis of peripheral Tregs and severe autoimmunity. Moreover, the impact of ADAR1 deficiency on Tregs is multifaceted, involving both MDA5 and PKR sensing. Together, our results highlight the dysregulation of Treg homeostasis by intrinsic aberrant RNA sensing as a potential determinant for type I interferonopathies.


Asunto(s)
Enfermedades Autoinmunes , Ácidos Nucleicos , Humanos , Ratones , Animales , Autoinmunidad , ARN , Linfocitos T Reguladores , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
5.
Front Immunol ; 14: 1297589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035108

RESUMEN

MICA is a stress-induced ligand of the NKG2D receptor that stimulates NK and T cell responses and was identified as a key determinant of anti-tumor immunity. The MICA gene is located inside the MHC complex and is in strong linkage disequilibrium with HLA-B. While an HLA-B*48-linked MICA deletion-haplotype was previously described in Asian populations, little is known about other MICA copy number variations. Here, we report the genotyping of more than two million individuals revealing high frequencies of MICA duplications (1%) and MICA deletions (0.4%). Their prevalence differs between ethnic groups and can rise to 2.8% (Croatia) and 9.2% (Mexico), respectively. Targeted sequencing of more than 70 samples indicates that these copy number variations originate from independent nonallelic homologous recombination events between segmental duplications upstream of MICA and MICB. Overall, our data warrant further investigation of disease associations and consideration of MICA copy number data in oncological study protocols.


Asunto(s)
Variaciones en el Número de Copia de ADN , Antígenos de Histocompatibilidad Clase I , Humanos , Frecuencia de los Genes , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA-B/genética , Polimorfismo Genético
6.
Pharmacol Res ; 196: 106887, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37574155

RESUMEN

Mast cell (MC) activation triggered by immunoglobulin E (IgE)-antigen crosslinking involves intracellular Ca2+ influx through the ORAI1 channel, which precedes granule exteriorization and de novo synthesis of mediators. Pharmacologically suppressing MCs via the inhibition of the ORAI1 Ca2+ channel may represent a potential strategy for preventing anaphylaxis. This study demonstrated that peanut-induced anaphylaxis in sensitized mice resulted in significant hypothermia and acute diarrhea. Utilizing the Mcpt5cre-DTA mouse model, we demonstrated that this anaphylactic response was mediated by IgE-antigen-induced MC activation. Prophylactic administration of MC suppressors was an effective means of preventing peanut-induced anaphylaxis. In addition, we observed the potent efficacy of an ORAI1 inhibitor in suppressing the FcεRI-mediated response of murine or human MCs, even when administered concurrently or post-allergen exposure. Mechanistically, the ORAI1 inhibitor was found to prevent the association of Synaptotagmin-2 with the SNARE complex. In an in vivo mouse model of peanut-induced anaphylaxis, the administration of the ORAI1 inhibitor after allergen challenge effectively suppressed allergic acute diarrhea and ameliorated anaphylaxis. Therefore, pharmacological intervention of ORAI1 channel inhibition in MCs represents a promising therapeutic avenue for the treatment of peanut-induced anaphylaxis and acute diarrhea in vivo.

7.
Cancer Res ; 83(17): 2858-2872, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37335136

RESUMEN

Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE: Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.


Asunto(s)
Interferón Tipo I , Leucemia , Animales , Ratones , Hematopoyesis/genética , Interferón Tipo I/metabolismo , Leucemia/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Transducción de Señal
8.
J Neuroinflammation ; 20(1): 114, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179295

RESUMEN

BACKGROUND: Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to ~ 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. METHODS: A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1CreIL-10 fl/fl) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8CreIL-10 fl/fl), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. RESULTS: Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4+ and γδ T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8CreIL-10 fl/fl but not CX3CR1CreIL-10 fl/fl mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. CONCLUSION: Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ratones , Interleucina-10 , Neutrófilos/patología , Craneotomía/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL
9.
Nat Immunol ; 24(6): 915-924, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37081147

RESUMEN

Immune cell locomotion is associated with amoeboid migration, a flexible mode of movement, which depends on rapid cycles of actin polymerization and actomyosin contraction1. Many immune cells do not necessarily require integrins, the major family of adhesion receptors in mammals, to move productively through three-dimensional tissue spaces2,3. Instead, they can use alternative strategies to transmit their actin-driven forces to the substrate, explaining their migratory adaptation to changing external environments4-6. However, whether these generalized concepts apply to all immune cells is unclear. Here, we show that the movement of mast cells (immune cells with important roles during allergy and anaphylaxis) differs fundamentally from the widely applied paradigm of interstitial immune cell migration. We identify a crucial role for integrin-dependent adhesion in controlling mast cell movement and localization to anatomical niches rich in KIT ligand, the major mast cell growth and survival factor. Our findings show that substrate-dependent haptokinesis is an important mechanism for the tissue organization of resident immune cells.


Asunto(s)
Actinas , Integrinas , Animales , Integrinas/metabolismo , Actinas/metabolismo , Mastocitos/metabolismo , Movimiento Celular , Leucocitos/metabolismo , Adhesión Celular , Mamíferos/metabolismo
10.
J Hepatol ; 79(1): 150-166, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36870611

RESUMEN

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Asunto(s)
COVID-19 , Interferón Tipo I , Ratones , Animales , Interleucina-10 , SARS-CoV-2 , Ratones Transgénicos , Cirrosis Hepática , Ratones Endogámicos C57BL
11.
Blood ; 141(20): 2483-2492, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36787502

RESUMEN

Hematopoietic stem cells (HSCs) are the ultimate source of blood and immune cells, and transplantation reveals their unique potential to regenerate all blood lineages lifelong. HSCs are considered a quiescent reserve population under homeostatic conditions, which can be rapidly activated by perturbations to fuel blood regeneration. In accordance with this concept, inflammation and loss of blood cells were reported to stimulate the proliferation of HSCs, which is associated with a decline in their transplantation potential. To investigate the contribution of primitive HSCs to the hematopoietic stress response in the native environment, we use fate mapping and proliferation tracking mouse models. Although primitive HSCs were robustly activated by severe myeloablation, they did not contribute to the regeneration of mature blood cells in response to prototypic hematopoietic emergencies, such as acute inflammation or blood loss. Even chronic inflammatory stimulation, which triggered vigorous HSC proliferation, only resulted in a weak contribution of HSCs to mature blood cell production. Thus, our data demonstrate that primitive HSCs do not participate in the hematopoietic recovery from common perturbations and call for the reevaluation of the concept of HSC-driven stress responses.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Animales , Ratones , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Regeneración/fisiología , Inflamación
12.
J Clin Med ; 12(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36836134

RESUMEN

As the key enzyme mediating ribonucleotide excision repair, RNase H2 is essential for the removal of single ribonucleotides from DNA in order to prevent genome damage. Loss of RNase H2 activity directly contributes to the pathogenesis of autoinflammatory and autoimmune diseases and might further play a role in ageing and neurodegeneration. Moreover, RNase H2 activity is a potential diagnostic and prognostic marker in several types of cancer. Until today, no method for quantification of RNase H2 activity has been validated for the clinical setting. Herein, validation and benchmarks of a FRET-based whole-cell lysate RNase H2 activity assay are presented, including standard conditions and procedures to calculate standardized RNase H2 activity. Spanning a wide working range, the assay is applicable to various human cell or tissue samples with overall methodological assay variability from 8.6% to 16%. Using our assay, we found RNase H2 activity was reduced in lymphocytes of two patients with systemic lupus erythematosus and one with systemic sclerosis carrying heterozygous mutations in one of the RNASEH2 genes. Implementation of larger control groups will help to assess the diagnostic and prognostic value of clinical screening for RNase H2 activity in the future.

13.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719648

RESUMEN

Emergency myelopoiesis (EM) is a hematopoietic response against systemic infections that quickly supplies innate immune cells. As lymphopoiesis is strongly suppressed during EM, the role of lymphocytes in that process has not received much attention. Here, we found that myeloid-like B cells (M-B cells), which express myeloid markers, emerge in the bone marrow (BM) after the induction of EM. M-B cells were mainly derived from pre-B cells and preferentially expressed IL-10, which directly stimulates hematopoietic progenitors to enhance their survival and myeloid-biased differentiation. Indeed, lacking IL-10 in B cells, blocking IL-10 in the BM with a neutralizing antibody, and deleting the IL-10 receptor in hematopoietic progenitors significantly suppressed EM, which failed to clear microbes in a cecal ligation and puncture model. Thus, a distinct B cell subset generated during infection plays a pivotal role in boosting EM, which suggests the on-demand reinforcement of EM by adaptive immune cells.


Asunto(s)
Linfocitos B , Interleucina-10 , Mielopoyesis , Médula Ósea/fisiología , Células de la Médula Ósea , Hematopoyesis , Células Mieloides
14.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346347

RESUMEN

Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.


Asunto(s)
Interferón Tipo I , Ácidos Nucleicos , Ratones , Animales , Proteína 1 que Contiene Dominios SAM y HD/genética , Inmunidad Innata/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo
15.
Rheumatology (Oxford) ; 62(4): 1699-1705, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36193988

RESUMEN

OBJECTIVES: Inborn errors of immunity manifest with susceptibility to infection but may also present with immune dysregulation only. According to the European Society for Immunodeficiencies Registry about 50% of inborn errors of immunity are classified as common variable immunodeficiencies (CVID). In only few CVID patients are monogenic causes identified. IFN regulatory factor-2 binding protein 2 (IRF2BP2) is one of 20 known genes associated with CVID phenotypes and has only been reported in two families so far. We report another IRF2BP2-deficient patient with a novel pathogenic variant and phenotype and characterize impaired B cell function and immune dysregulation. METHODS: We performed trio whole-exome sequencing, determined B cell subpopulations and intracellular calcium mobilization upon B cell receptor crosslinking in B cells. T cell subpopulations, T cell proliferation and a type I IFN signature were measured. Colonoscopy and gastroduodenoscopy including histopathology were performed. RESULTS: The 33-year-old male presented with recurrent respiratory infections since childhood, colitis and RA beginning at age 25 years. We identified a novel de novo nonsense IRF2BP2 variant c.1618C>T; p.(Q540*). IgG deficiency was detected as consequence of a severe B cell differentiation defect. This was confirmed by impaired plasmablast formation upon stimulation with CpG. No serum autoantibodies were detected. Intracellular cytokine production in CD4+ T cells and CTLA4 expression on FOXP3+ Tregs were impaired. Type I IFN signature was elevated. CONCLUSION: The identified loss-of-function variant in IRF2BP2 severely impairs B cell development and T cell homeostasis, and may be associated with colitis and RA. Our results provide further evidence for association of IRF2BP2 with CVID and contribute to the understanding of the underlying pathomechanisms.


Asunto(s)
Linfocitos T CD4-Positivos , Factores de Transcripción , Masculino , Linfocitos B , Mutación , Fenotipo , Humanos , Adulto
16.
Nat Commun ; 13(1): 7029, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396641

RESUMEN

Neutrophil diapedesis is an immediate step following infections and injury and is driven by complex interactions between leukocytes and various components of the blood vessel wall. Here, we show that perivascular mast cells (MC) are key regulators of neutrophil behaviour within the sub-endothelial space of inflamed venules. Using confocal intravital microscopy, we observe directed abluminal neutrophil motility along pericyte processes towards perivascular MCs, a response that created neutrophil extravasation hotspots. Conversely, MC-deficiency and pharmacological or genetic blockade of IL-17A leads to impaired neutrophil sub-endothelial migration and breaching of the pericyte layer. Mechanistically, identifying MCs as a significant cellular source of IL-17A, we establish that MC-derived IL-17A regulates the enrichment of key effector molecules ICAM-1 and CXCL1 in nearby pericytes. Collectively, we identify a novel MC-IL-17A-pericyte axis as modulator of the final steps of neutrophil diapedesis, with potential translational implications for inflammatory disorders driven by increased neutrophil diapedesis.


Asunto(s)
Neutrófilos , Migración Transendotelial y Transepitelial , Neutrófilos/fisiología , Pericitos , Interleucina-17 , Mastocitos
17.
Front Immunol ; 13: 1000405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439118

RESUMEN

Mast cells are innate immune cells strategically positioned around blood vessels near body surfaces. Their primary weapons are bioactive amines, mast cell-specific proteases, and cytokines stored in preformed granules. Mast cells granules constituents are packaged efficiently with the help of the highly negatively charged Heparan sulfate-derivative, Heparin. Heparin is one of the most widely used drugs to treat coagulation disorders, yet, it is not found in the circulation at a steady state, casting doubt that the prevention of blood clotting is its physiological function. Early studies using Ndst2 -/- mice have shown that Heparin is essential for mast cells granules formation. However, these mice could still produce less sulfated Heparan sulfate that could potentially replace Heparin. Here, we have created and validated a novel genetic model for Heparin deficiency, specifically in connective tissue mast cells, to address the physiological role of this molecule. Using this model, we have demonstrated that Heparin is required for mast cell granules formation; without it, mast cells are reduced in the peritoneal cavity and the skin. The absence of Heparin impaired the response to passive cutaneous anaphylaxis but, surprisingly, enhanced ear swelling in an irritant dermatitis model and reduced the lesion size and bacterial burden in a Staphylococcus aureus necrotizing dermatitis model. The altered function of Heparin-deficient mast cells in the latter two models was not mediated through enhanced Histamine or TNFα release. However, the Mrgprb2 receptor was up-regulated in knock-out mast cells, potentially explaining the enhanced response of mutant mice to irritant and necrotizing dermatitis. Altogether our results expand our current understanding of the physiological role of Heparin and provide unique tools to further dissect its importance.


Asunto(s)
Dermatitis , Heparina , Ratones , Animales , Heparina/farmacología , Mastocitos , Heparitina Sulfato/genética , Tejido Conectivo
18.
BMJ Open ; 12(11): e066128, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368749

RESUMEN

INTRODUCTION: Donor-derived modified immune cells (MIC) induced long-term specific immunosuppression against the allogeneic donor in preclinical models of transplantation. In a phase I clinical trial (TOL-1 Study), MIC treatment resulted in a cellular phenotype that was directly and indirectly suppressive to the recipient's immune system allowing for reduction of conventional immunosuppressive therapy. Here, we describe a protocol for a randomised controlled, multicentre phase-IIb clinical trial of individualised immunosuppression with intravenously administered donor MIC compared with standard-of-care (SoC) in living donor kidney transplantation (TOL-2 Study). METHODS AND ANALYSIS: Sixty-three living donor kidney transplant recipients from six German transplant centres are randomised 2:1 to treatment with MIC (MIC group, N=42) or no treatment with MIC (control arm, N=21). MIC are manufactured from donor peripheral blood mononuclear cells under Good Manufacturing Practice conditions. The primary objective of this trial is to determine the efficacy of MIC treatment together with reduced conventional immunosuppressive therapy in terms of achieving an operational tolerance-like phenotype compared with SoC 12 months after MIC administration. Key secondary endpoints are the number of patient-relevant infections as well as a composite of biopsy-proven acute rejection, graft loss, graft dysfunction or death. Immunosuppressive therapy of MIC-treated patients is reduced during follow-up under an extended immunological monitoring including human leucocyte antigen-antibody testing, and determination of lymphocyte subsets, for example, regulatory B lymphocytes (Breg) and antidonor T cell response. A Data Safety Monitoring Board has been established to allow an independent assessment of safety and efficacy. ETHICS AND DISSEMINATION: Ethical approval has been provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg, Heidelberg, Germany (AFmu-580/2021, 17 March 2022) and from the Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institute, Langen, Germany (Vorlage-Nr. 4586/02, 21 March 2022). Written informed consent will be obtained from all patients and respective donors prior to enrolment in the study. The results from the TOL-2 Study will be published in peer-reviewed medical journals and will be presented at symposia and scientific meetings. TRIAL REGISTRATION NUMBER: NCT05365672.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Donadores Vivos , Nivel de Atención , Leucocitos Mononucleares , Terapia de Inmunosupresión , Inmunosupresores/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase II como Asunto
19.
Nat Commun ; 13(1): 4504, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922411

RESUMEN

Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48-/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis.


Asunto(s)
Células Madre Hematopoyéticas , Trombopoyesis , Diferenciación Celular/fisiología , Linaje de la Célula , Células Madre Hematopoyéticas/metabolismo , Mielopoyesis , Trombopoyesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA