Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Microbiol Resour Announc ; : e0042224, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832805

RESUMEN

Here, we report 27 metagenome-assembled bacterial genomes (MAGs) from litter samples of a secondary forest located in Brazil over an Amazonian Dark Earth pool. The data set includes members from the phyla Pseudomonadata (14 MAGs), Actinomycetota (7 MAGs), Bacteroidota (4 MAGs), Bacillota (1 MAG), and Bdellovibrionota (1 MAG).

2.
Life Sci Space Res (Amst) ; 41: 171-180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670644

RESUMEN

The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.


Asunto(s)
Astronautas , Microbioma Gastrointestinal , Permeabilidad , Vuelo Espacial , Humanos , Animales , Ratones , Transcriptoma , Tracto Gastrointestinal/microbiología
3.
Transl Anim Sci ; 8: txad148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38221956

RESUMEN

The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 µM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.

4.
Front Microbiol ; 14: 1201064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547696

RESUMEN

Despite the advent of third-generation sequencing technologies, modern bacterial ecology studies still use Illumina to sequence small (~400 bp) hypervariable regions of the 16S rRNA SSU for phylogenetic classification. By sequencing a larger region of the rRNA gene operons, the limitations and biases of sequencing small portions can be removed, allowing for more accurate classification with deeper taxonomic resolution. With Nanopore sequencing now providing raw simplex reads with quality scores above Q20 using the kit 12 chemistry, the ease, cost, and portability of Nanopore play a leading role in performing differential bacterial abundance analysis. Sequencing the near-entire rrn operon of bacteria and archaea enables the use of the universally conserved operon holding evolutionary polymorphisms for taxonomic resolution. Here, a reproducible and validated pipeline was developed, RRN-operon Enabled Species-level Classification Using EMU (RESCUE), to facilitate the sequencing of bacterial rrn operons and to support import into phyloseq. Benchmarking RESCUE showed that fully processed reads are now parallel or exceed the quality of Sanger, with median quality scores of approximately Q20+, using the R10.4 and Guppy SUP basecalling. The pipeline was validated through two complex mock samples, the use of multiple sample types, with actual Illumina data, and across four databases. RESCUE sequencing is shown to drastically improve classification to the species level for most taxa and resolves erroneous taxa caused by using short reads such as Illumina.

5.
Res Microbiol ; 174(8): 104116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573924

RESUMEN

Agaricus subrufescens, also known as the "sun mushroom," has significant nutritional and medicinal value. However, its short shelf life due to the browning process results in post-harvest losses unless it's quickly dehydrated. This restricts its availability to consumers in the form of capsules. A genome sequence of A. subrufescens may lead to new cultivation alternatives or the application of gene editing strategies to delay the browning process. We assembled a chromosome-scale genome using a hybrid approach combining Illumina and Nanopore sequencing. The genome was assembled into 13 chromosomes and 31 unplaced scaffolds, totaling 44.5 Mb with 96.5% completeness and 47.24% GC content. 14,332 protein-coding genes were identified, with 64.6% of the genome covered by genes and 23.41% transposable elements. The mitogenome was circularized and encoded fourteen typical mitochondrial genes. Four polyphenol oxidase (PPO) genes and the Mating-type locus were identified. Phylogenomic analysis supports the placement of A. subrufescens in the Agaricomycetes clade. This is the first available genome sequence of a strain of the "sun mushroom." Results are available through a Genome Browser (https://plantgenomics.ncc.unesp.br/gen.php?id=Asub) and can support further fungal biological and genomic studies.


Asunto(s)
Agaricus , Agaricus/genética , Genómica , Cromosomas , Biotecnología , Genoma Fúngico
6.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37350733

RESUMEN

Magnesium oxide (MgO) is one of the most used Mg supplements in livestock. However, to avoid relying upon only one Mg source, it is important to have alternative Mg sources. Therefore, the objective of this study was to evaluate the effects of the interaction of two Mg sources with buffer use on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. Twenty lactating Holstein cows were blocked by parity and days in milk into five blocks with four cows each, in a 2 × 2 factorial design. Within blocks, cows were assigned to one of four treatments: 1) MgO; 2) MgO + Na sesquicarbonate (MgO+); 3) calcium-magnesium hydroxide (CaMgOH); 4) CaMgOH + Na sesquicarbonate (CaMgOH+). For 60 d, cows were individually fed a corn silage-based diet, and treatments were top-dressed. Ruminal fluid was collected via an orogastric tube, for analyses of the microbiota composition, volatile fatty acids (VFA), lactate, and ammonia nitrogen (NH3-N). The microbiota composition was analyzed using V4/16S rRNA gene sequencing, and taxonomy was assigned using the Silva database. Statistical analysis was carried out following the procedures of block design analysis, where block and cow were considered random variables. Effects of Mg source, buffer, and the interaction between Mg Source × Buffer were analyzed through orthogonal contrasts. There was no interaction effect of the two factors evaluated. There was a greater concentration of NH3-N, lactate, and butyrate in the ruminal fluid of cows fed with CaMg(OH)2, regardless of the buffer use. The increase in these fermentation intermediates/ end-products can be explained by an increase in abundance of micro-organisms of the genus Prevotella, Lactobacillus, and Butyrivibrio, which are micro-organisms mainly responsible for proteolysis, lactate-production, and butyrate-production in the rumen, respectively. Also, dietary buffer use did not affect the ruminal fermentation metabolites and pH; however, an improvement of the apparent total tract digestibility of dry matter (DM), organic matter (OM), neutral fiber detergent (NDF), and acid fiber detergent (ADF) were found for animals fed with dietary buffer. In summary, there was no interaction effect of buffer use and Mg source, whereas buffer improved total tract apparent digestibility of DM and OM through an increase in NDF and ADF digestibility and CaMg(OH)2 increased ruminal concentration of butyrate and abundance of butyrate-producing bacteria.


Magnesium oxide (MgO) is extensively used as a dietary magnesium (Mg) source in dairy cow diets. However, dairy operations can benefit from other Mg sources. Thus, we evaluated the replacement of dietary MgO with calcium­magnesium hydroxide (CaMg(OH)2) in diets with and without ruminal buffer and their effects on the ruminal microbiota composition, ruminal fermentation, and nutrient digestibility in lactating dairy cows. The study used 20 lactating Holstein cows that were blocked in groups of four and randomly assigned to one of the four treatments. The ruminal content, feed, feces, and urine were collected for analysis of the microbiota composition, ruminal fermentation, nitrogen metabolism, and apparent nutrient digestibility. There was no interaction effect of dietary buffer use and Mg source, while buffer improved total tract apparent digestibility of the dry matter and fiber components; CaMg(OH)2 increased the ruminal concentration of butyrate and the abundance of butyrate-producing bacteria. In summary, we conclude that using CaMg(OH)2 can improve ruminal fermentation regardless of buffer use, which indicates that we can take advantage of the mineral formulation in the diet to modulate the ruminal microbiota composition.


Asunto(s)
Lactancia , Microbiota , Embarazo , Femenino , Bovinos , Animales , Magnesio/análisis , Magnesio/metabolismo , Magnesio/farmacología , Fermentación , Óxido de Magnesio/análisis , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Detergentes/análisis , Detergentes/metabolismo , Detergentes/farmacología , ARN Ribosómico 16S/metabolismo , Digestión , Leche/metabolismo , Dieta/veterinaria , Butiratos/análisis , Zea mays/metabolismo , Lactatos/análisis , Lactatos/metabolismo , Lactatos/farmacología , Rumen/metabolismo
7.
Aging Dis ; 14(6): 2081-2095, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37199579

RESUMEN

In recent decades, gut microbiome research has experienced significant growth, driven by technological advances that enable quantifying bacterial taxa with greater precision. Age, diet, and living environment have emerged as three key factors influencing gut microbes. Dysbiosis, resulting from alterations in these factors, may lead to changes in bacterial metabolites that regulate pro- and anti-inflammatory processes and consequently impact bone health. Restoration of a healthy microbiome signature could mitigate inflammation and potentially reduce bone loss associated with osteoporosis or experienced by astronauts during spaceflight. However, current research is hindered by contradictory findings, insufficient sample sizes, and inconsistency in experimental conditions and controls. Despite progress in sequencing technology, defining a healthy gut microbiome across global populations remains elusive. Challenges persist in identifying accurate gut bacterial metabolics, specific taxa, and their effects on host physiology. We suggest greater attention be directed towards this issue in Western countries as the cost of treating osteoporosis in the United States reaches billions of dollars annually, with expenses projected to continue rising.

8.
Microbiol Spectr ; 11(3): e0032223, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37042756

RESUMEN

Over the past decade, the role of the gut microbiota in many disease states has gained a great deal of attention. Mounting evidence from case-control and observational studies has linked changes in the gut microbiota to the pathophysiology of osteoporosis (OP). Nonetheless, the results of these studies contain discrepancies, leaving the literature without a consensus on osteoporosis-associated microbial signatures. Here, we conducted a comprehensive meta-analysis combining and reexamining five publicly available 16S rRNA partial sequence data sets to identify gut bacteria consistently associated with osteoporosis across different cohorts. After adjusting for the batch effect associated with technical variation and heterogeneity of studies, we observed a significant shift in the microbiota composition in the osteoporosis group. An increase in the relative abundance of opportunistic pathogens Clostridium sensu stricto, Bacteroides, and Intestinibacter was observed in the OP group. Moreover, short-chain-fatty-acid (SCFA) producers, including members of the genera Collinsella, Megasphaera, Agathobaculum, Mediterraneibacter, Clostridium XIV, and Dorea, were depleted in the OP group relative to the healthy control (HC) group. Lactic acid-producing bacteria, including Limosilactobacillus, were significantly increased in the OP group. The random forest algorithm further confirmed that these bacteria differentiate the two groups. Furthermore, functional prediction revealed depletion of the SCFA biosynthesis pathway (glycolysis, tricarboxylic acid [TCA] cycle, and Wood-Ljungdahl pathway) and amino acid biosynthesis pathway (methionine, histidine, and arginine) in the OP group relative to the HC group. This study uncovered OP-associated compositional and functional microbial alterations, providing robust insight into OP pathogenesis and aiding the possible development of a therapeutic intervention to manage the disease. IMPORTANCE Osteoporosis is the most common metabolic bone disease associated with aging. Mounting evidence has linked changes in the gut microbiota to the pathophysiology of osteoporosis. However, which microbes are associated with dysbiosis and their impact on bone density and inflammation remain largely unknown due to inconsistent results in the literature. Here, we present a meta-analysis with a standard workflow, robust statistical approaches, and machine learning algorithms to identify notable microbial compositional changes influencing osteoporosis.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillales , Osteoporosis , Humanos , Heces/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Microbioma Gastrointestinal/fisiología
9.
Cytokine ; 162: 156088, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462220

RESUMEN

INTRODUCTION: Hepatic Glycogen Storage Diseases (GSD) are rare genetic disorders in which the gluconeogenesis pathway is impaired. Cytokines control virtually every aspect of physiology and may help to elucidate some unsolved questions about phenotypes presented by GSD patients. METHODS: This was an exploratory study in which 27 GSD patients on treatment (Ia = 16, Ib = 06, III = 02, IXα = 03) and 24 healthy age- and sex-matched subjects had plasma samples tested for a panel of 20 cytokines (G-CSF,GM-CSF, IL-1α,IL-1ß, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, GRO, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, MDC/CCL22, IFN-γ, TNF-α, TNF-ß, VEGF) through a multiplex kit and analyzed in comparison to controls and among patients, regarding to clinical features as anemia, hepatic adenocarcinoma and triglyceride levels. RESULTS: Patients (GSD-Ia/III/IX) presented reduced levels of IL-4 (p = 0.040), MIP-1α/CCL3 (p = 0.003), MDC/CCL22 (p < 0.001), TNF-ß (p = 0.045) and VEGF (p = 0.043) compared to controls. When different types of GSD were compared, G-CSF was higher in GSD-Ib than -Ia (p < 0.001) and than -III/IX (p = 0.033) patients; IL-10 was higher in GSD-Ib than in GSD-Ia patients (p = 0.019); and GSD-III/IX patients had increased levels of IP-10/CXCL10 than GSD-Ib patients (p = 0.019). When GSD-I patients were gathered into the same group and compared with GSD-III/IX patients, IP10/CXCL10 and MCP-1 were higher in the latter group (p = 0.005 and p = 0.013, respectively). GSD-I patients with anemia presented higher levels of IL-4 and MIP-1α in comparison with patients who had not. Triglyceride level was correlated with neutrophil count and MDC levels on GSD-Ia patients without HCA. CONCLUSION: Altogether, altered levels of cytokines in GSD-I patients reflect an imbalance in immunoregulation process. This study also indicates that neutrophils and some cytokines are affected by triglyceride levels, and future studies on the theme should consider this variable.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Interleucina-10 , Humanos , Quimiocina CCL3 , Quimiocina CXCL10 , Interleucina-4 , Linfotoxina-alfa , Factor A de Crecimiento Endotelial Vascular , Citocinas , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Factor Estimulante de Colonias de Granulocitos , Triglicéridos
10.
PLoS One ; 17(12): e0279386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36538559

RESUMEN

A deep understanding of the cattle gastrointestinal microbiome is crucial to selective breeding high-efficiency animals that produce more and generate less environmental damage. Here we performed the taxonomic identification of Bacterial and Archaeal communities using high throughput 16SrRNA gene sequencing from critical compartments of the gastrointestinal tract of Bradford cattle raised in a natural grassland in the Pampa biome, Brazil. We analyzed 110 samples, including saliva, ruminal fluid, and feces from 36 months old Bradford heifers (weighing on average 343 ± 30 kg by the sampling time). To reduce unexpected variation and confounders, we selected the animals from the same breed, submitted them to the same food source, and collected the samples for three consecutive years from different animals in the same season. Our main goal was to analyze the microbial shifts throughout the gastrointestinal tract to reference future works proposing management strategies and interventions to improve animal nutrition and increase production in the Pampa Biome. To accomplish our objective, we accessed the microbial community differences in groups with a high and low weight gain controlling for food ingestion and quality of grazed pasture. Few taxa were shared among the samples. About 40% of the phyla and 60% of the genera were unique from saliva samples, and 12.4% of the microbial genera were uniquely found in feces. All samples shared only 36.1% of phyla and 7.5% of genera. Differences in microbial diversity and taxa counts were observed. The ruminal fluid presented the lowest microbial richness, while saliva and feces presented the highest microbial richness. On the other hand, saliva and feces also presented more distinct communities between themselves when compared with ruminal samples. Our data showed that the saliva microbiome is not representative of the rumen microbiome and should not be used as an easy-to-collect sample for studies about the rumen microbiome.


Asunto(s)
Alimentación Animal , Microbiota , Bovinos , Animales , Femenino , Alimentación Animal/análisis , Rumen/microbiología , Tracto Gastrointestinal/microbiología , Microbiota/genética , Heces/microbiología , ARN Ribosómico 16S/genética
11.
J Autoimmun ; 133: 102943, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356550

RESUMEN

To exemplify autoimmune-associated genetic influence on the colonization of bacteria frequently used in probiotics, microbial composition of stool from 1326 one-year-old infants was analyzed in a prospective general-population cohort, All Babies In Southeast Sweden (ABIS). We show that an individual's HLA haplotype composition has a significant impact on which common Bifidobacterium strains thrive in colonizing the gut. The effect HLA has on the gut microbiome can be more clearly observed when considered in terms of allelic dosage. HLA DR1-DQ5 showed the most significant and most prominent effect on increased Bifidobacterium relative abundance. Therefore, HLA DR1-DQ5 is proposed to act as a protective haplotype in many individuals. Protection-associated HLA haplotypes are more likely to influence the promotion of specific bifidobacteria. In addition, strain-level differences are correlated with colonization proficiency in the gut depending on HLA haplotype makeup. These results demonstrate that HLA genetics should be considered when designing effective probiotics, particularly for those at high genetic risk for autoimmune diseases.


Asunto(s)
Antígeno HLA-DR1 , Humanos , Lactante , Estudios Prospectivos , Suecia
12.
BMC Genomics ; 23(1): 661, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123651

RESUMEN

BACKGROUND: To identify operational taxonomy units (OTUs) signaling disease onset in an observational study, a powerful strategy was selecting participants by matched sets and profiling temporal metagenomes, followed by trajectory analysis. Existing trajectory analyses modeled individual OTU or microbial community without adjusting for the within-community correlation and matched-set-specific latent factors. RESULTS: We proposed a joint model with matching and regularization (JMR) to detect OTU-specific trajectory predictive of host disease status. The between- and within-matched-sets heterogeneity in OTU relative abundance and disease risk were modeled by nested random effects. The inherent negative correlation in microbiota composition was adjusted by incorporating and regularizing the top-correlated taxa as longitudinal covariate, pre-selected by Bray-Curtis distance and elastic net regression. We designed a simulation pipeline to generate true biomarkers for disease onset and the pseudo biomarkers caused by compositionality. We demonstrated that JMR effectively controlled the false discovery and pseudo biomarkers in a simulation study generating temporal high-dimensional metagenomic counts with random intercept or slope. Application of the competing methods in the simulated data and the TEDDY cohort showed that JMR outperformed the other methods and identified important taxa in infants' fecal samples with dynamics preceding host disease status. CONCLUSION: Our method JMR is a robust framework that models taxon-specific trajectory and host disease status for matched participants without transformation of relative abundance, improving the power of detecting disease-associated microbial features in certain scenarios. JMR is available in R package mtradeR at https://github.com/qianli10000/mtradeR.


Asunto(s)
Metagenoma , Microbiota , Estudios de Cohortes , Heces , Humanos , Metagenómica
13.
Braz J Microbiol ; 53(4): 2051-2063, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083529

RESUMEN

Bacillus subtilis is a versatile bacterial species able to produce surfactin, a lipopeptide biosurfactant. We carried out the phylogenomic characterization and pangenomic analyses using available B. subtilis complete genomes. Also, we report the whole genome of the biosurfactant-producing B. subtilis strain RI4914 that was isolated from effluent water from an oil exploration field. We applied a hybrid sequencing approach using both long- and short-read sequencing technologies to generate a highly accurate, single-chromosome genome. The pangenomics analysis of 153 complete genomes classified as B. subtilis retrieved from the NCBI shows an open pangenome composed of 28,511 accessory genes, which agrees with the high genetic plasticity of the species. Also, this analysis suggests that surfactin production is a common trait shared by members of this species since the srfA operon is highly conserved among the B. subtilis strains found in most of the assemblies available. Finally, increased surfactin production corroborates the higher srfAA gene expression in B. subtilis strain RI4914.


Asunto(s)
Bacillus subtilis , Péptidos Cíclicos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Filogenia , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Lipopéptidos , Operón , Proteínas Bacterianas/metabolismo
14.
Metabolites ; 12(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144277

RESUMEN

Recently, patients with glycogen storage disease (GSD) have been described as having gut dysbiosis, lower fecal pH, and an imbalance in SCFAs due to an increase in acetate and propionate levels. Here, we report the fecal measurement of bacterial-related metabolites formic, acetic, lactic, propionic, and succinic acid, a key metabolite of both host and microbiota, on a previously described cohort of 24 patients (GSD Ia = 15, GSD Ib = 5, 1 GSD III = 1 and GSD IX = 3) and 16 healthy controls, with similar sex and age, using the high-performance liquid chromatography technique. The succinic acid levels were higher in the GSD patients than in the controls (patients = 38.02; controls = 27.53; p = 0.045), without differences between the groups for other metabolites. Fecal pH present inverse correlation with lactic acid (R = -0.54; p = 0.0085), while OTUs were inversely correlated with both lactic (R = -0.46; p = 0.026) and formic (R = -0.54; p = 0.026) acids. Using two distinct metrics of diversity, borderline significance was obtained for propionic acid, affecting the microbial structure on Euclidean basis in 8% (r2 = 0.081; p = 0.079), and for lactic acid, affecting 6% of microbial structure using Bray-Curtis distance (r2 = 0.065; p = 0.060). No correlation was found between SCFAs and total carbohydrate consumption among the participants or uncooked cornstarch consumption among the patients.

15.
Sci Rep ; 12(1): 14306, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995968

RESUMEN

Here, salivary microbiota and major histocompatibility complex (MHC) human leukocyte antigen (HLA) alleles were compared between 47 (12.6%) young adults with recent suicidal ideation (SI) and 325 (87.4%) controls without recent SI. Several bacterial taxa were correlated with SI after controlling for sleep issues, diet, and genetics. Four MHC class II alleles were protective for SI including DRB1*04, which was absent in every subject with SI while present in 21.7% of controls. Increased incidence of SI was observed with four other MHC class II alleles and two MHC class I alleles. Associations between these HLA alleles and salivary bacteria were also identified. Furthermore, rs10437629, previously associated with attempted suicide, was correlated here with SI and the absence of Alloprevotella rava, a producer of an organic acid known to promote brain energy homeostasis. Hence, microbial-genetic associations may be important players in the diathesis-stress model for suicidal behaviors.


Asunto(s)
Microbiota , Ideación Suicida , Alelos , Dieta , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Antígenos HLA , Cadenas HLA-DRB1/genética , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Microbiota/genética , Saliva , Estudiantes , Universidades , Adulto Joven
16.
N Biotechnol ; 70: 116-128, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35717012

RESUMEN

Citrus is the most cultivated fruit crop worldwide. The modern citrus industry needs new bioproducts to overcome phytopathological threats, tolerate stresses and increase yield and quality. Mutualistic microbes from roots significantly impact host physiology and health and are a potentially beneficial resource. The bacterial microbiome can be surveyed to select potentially host-beneficial microbes. To achieve this goal, a prevalent "core-citrus" bacterial microbiome was obtained by picking those operational taxonomic units (OTUs) shared among samples within and across two Citrus rootstock genotypes grown in the same soil for more than 20 years. A sub-selection of main OTUs from the defined "core-citrus" microbiome was made based on abundance, host-enriched versus bulk soil, and rhizosphere-indicator species. In parallel, an extensive census of the cultivable microbiota was performed to collect a large number of bacterial citrus isolates. Metataxonomic data were linked to cultured microbes, matching 16S rRNA gene sequences from bacterial isolates with those counterpart OTU reference sequences from the selected bacterial "core-citrus" microbiome. This approach allowed selection of potentially host-beneficial bacteria to mine for agricultural probiotics in future biotechnological applications required for the citrus industry.


Asunto(s)
Citrus , Microbiota , Bacterias , Citrus/genética , Citrus/microbiología , Microbiota/genética , ARN Ribosómico 16S/genética , Rizosfera , Suelo , Microbiología del Suelo
17.
J Matern Fetal Neonatal Med ; 35(10): 1935-1943, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32508165

RESUMEN

BACKGROUND: Early-onset neonatal sepsis (EONS) remains one of the leading causes of morbidity and mortality related to premature birth, and its diagnosis remains difficult. Our goal was to evaluate the intestinal microbiota of the first meconium of preterm newborns and ascertain whether it is associated with clinical EONS. METHODS: In a controlled, prospective cohort study, samples of the first meconium of premature infants with a gestational age (GA) ≤32 weeks was obtained at Hospital de Clínicas de Porto Alegre and DNA was isolated from the samples. 16S rDNA based microbiota composition of preterm infants with a clinical diagnosis of EONS was compared to that of a control group. RESULTS: 40 (48%) premature infants with clinical diagnosis of EONS and 44 (52%) without EONS were included in the analysis. The most abundant phylum detected in both groups, Proteobacteria, was more prevalent in the sepsis group (p = .034). 14% of variance among bacterial communities (p = .001) correlated with EONS. The genera most strongly associated with EONS were Paenibacillus, Caulobacter, Dialister, Akkermansia, Phenylobacterium, Propionibacterium, Ruminococcus, Bradyrhizobium, and Alloprevotella. A single genus, Flavobacterium, was most strongly associated with the control group. CONCLUSION: These findings suggest that the first-meconium microbiota is different in preterm neonates with and without clinical EONS.


Asunto(s)
Enfermedades del Prematuro , Microbiota , Sepsis Neonatal , Nacimiento Prematuro , Sepsis , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/diagnóstico , Meconio/microbiología , Sepsis Neonatal/diagnóstico , Embarazo , Estudios Prospectivos , Sepsis/diagnóstico , Sepsis/microbiología
18.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33571355

RESUMEN

Seed germination events modulate microbial community composition, which ultimately influences seed-to-seedling growth performance. Here, we evaluate the germinated maize (variety SHS 5050) root bacterial community of disinfected seed (DS) and non-disinfected seed (NDS). Using a gnotobiotic system, sodium hypochlorite (1.25%; 30 min)-treated seeds showed a reduction of bacterial population size and an apparent increase of bacterial community diversity associated with a significant selective reduction of Burkholderia-related sequences. The shift in the bacterial community composition in DS negatively affects germination speed, seedling growth and reserve mobilization rates compared with NDS. A synthetic bacterial community (syncom) formed by 12 isolates (9 Burkholderia spp., 2 Bacillus spp., and 1 Staphylococcus sp.) obtained from natural microbiota maize seeds herein was capable of recovering germination and seedling growth when reintroduced in DS. Overall, results showed that changes in bacterial community composition and selective reduction of Burkholderia-related members' dominance interfere with germination events and the initial growth of the maize. By cultivation-dependent and -independent approaches, we deciphered seed-maize microbiome structure, bacterial niches location and bacterial taxa with relevant roles in seedling growth performance. A causal relationship between seed microbial community succession and germination performance opens opportunities in seed technologies to build-up microbial communities to boost plant growth and health.


Asunto(s)
Germinación , Microbiota , Plantones , Semillas , Zea mays
19.
Mol Psychiatry ; 26(8): 4277-4287, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-31988436

RESUMEN

Single nucleotide exact amplicon sequence variants (ASV) of the human gut microbiome were used to evaluate if individuals with a depression phenotype (DEPR) could be identified from healthy reference subjects (NODEP). Microbial DNA in stool samples obtained from 40 subjects were characterized using high throughput microbiome sequence data processed via DADA2 error correction combined with PIME machine-learning de-noising and taxa binning/parsing of prevalent ASVs at the single nucleotide level of resolution. Application of ALDEx2 differential abundance analysis with assessed effect sizes and stringent PICRUSt2 predicted metabolic pathways. This multivariate machine-learning approach significantly differentiated DEPR (n = 20) vs. NODEP (n = 20) (PERMANOVA P < 0.001) based on microbiome taxa clustering and neurocircuit-relevant metabolic pathway network analysis for GABA, butyrate, glutamate, monoamines, monosaturated fatty acids, and inflammasome components. Gut microbiome dysbiosis using ASV prevalence data may offer the diagnostic potential of using human metaorganism biomarkers to identify individuals with a depression phenotype.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Aprendizaje Automático , Depresión/genética , Microbioma Gastrointestinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nucleótidos , Fenotipo , ARN Ribosómico 16S/genética
20.
Microbiol Res ; 243: 126643, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33227680

RESUMEN

Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/fisiología , Semillas/microbiología , Zea mays/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Germinación , Microbiota , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/crecimiento & desarrollo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...