Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36982458

RESUMEN

Lipid peroxidation (LPO), a process that affects human health, can be induced by exposure to vanadium salts and compounds. LPO is often exacerbated by oxidation stress, with some forms of vanadium providing protective effects. The LPO reaction involves the oxidation of the alkene bonds, primarily in polyunsaturated fatty acids, in a chain reaction to form radical and reactive oxygen species (ROS). LPO reactions typically affect cellular membranes through direct effects on membrane structure and function as well as impacting other cellular functions due to increases in ROS. Although LPO effects on mitochondrial function have been studied in detail, other cellular components and organelles are affected. Because vanadium salts and complexes can induce ROS formation both directly and indirectly, the study of LPO arising from increased ROS should include investigations of both processes. This is made more challenging by the range of vanadium species that exist under physiological conditions and the diverse effects of these species. Thus, complex vanadium chemistry requires speciation studies of vanadium to evaluate the direct and indirect effects of the various species that are present during vanadium exposure. Undoubtedly, speciation is important in assessing how vanadium exerts effects in biological systems and is likely the underlying cause for some of the beneficial effects reported in cancerous, diabetic, neurodegenerative conditions and other diseased tissues impacted by LPO processes. Speciation of vanadium, together with investigations of ROS and LPO, should be considered in future biological studies evaluating vanadium effects on the formation of ROS and on LPO in cells, tissues, and organisms as discussed in this review.


Asunto(s)
Sales (Química) , Vanadio , Humanos , Especies Reactivas de Oxígeno/farmacología , Peroxidación de Lípido , Vanadio/toxicidad , Sales (Química)/farmacología , Estrés Oxidativo
2.
Molecules ; 28(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838987

RESUMEN

A comprehensive understanding of the mechanisms involved in epigenetic changes in gene expression is essential to the clinical management of diseases linked to the SMYD family of lysine methyltransferases. The five known SMYD enzymes catalyze the transfer of donor methyl groups from S-adenosylmethionine (SAM) to specific lysines on histones and non-histone substrates. SMYDs family members have distinct tissue distributions and tissue-specific functions, including regulation of development, cell differentiation, and embryogenesis. Diseases associated with SMYDs include the repressed transcription of SMYD1 genes needed for the formation of ion channels in the heart leading to heart failure, SMYD2 overexpression in esophageal squamous cell carcinoma (ESCC) or p53-related cancers, and poor prognosis associated with SMYD3 overexpression in more than 14 types of cancer including breast cancer, colon cancer, prostate cancer, lung cancer, and pancreatic cancer. Given the importance of epigenetics in various pathologies, the development of epigenetic inhibitors has attracted considerable attention from the pharmaceutical industry. The pharmacologic development of the inhibitors involves the identification of molecules regulating both functional SMYD SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domains, a process facilitated by available X-ray structures for SMYD1, SMYD2, and SMYD3. Important leads for potential pharmaceutical agents have been reported for SMYD2 and SMYD3 enzymes, and six epigenetic inhibitors have been developed for drugs used to treat myelodysplastic syndrome (Vidaza, Dacogen), cutaneous T-cell lymphoma (Zoinza, Isrodax), and peripheral T-cell lymphoma (Beleodag, Epidaza). The recently demonstrated reversal of SMYD histone methylation suggests that reversing the epigenetic effects of SMYDs in cancerous tissues may be a desirable target for pharmacological development.


Asunto(s)
Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Humanos , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Neoplasias/genética
3.
Diseases ; 8(3)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942611

RESUMEN

Signal transduction by luteinizing hormone receptors (LHRs) and follicle-stimulating hormone receptors (FSHRs) is essential for the successful reproduction of human beings. Both receptors and the thyroid-stimulating hormone receptor are members of a subset of G-protein coupled receptors (GPCRs) described as the glycoprotein hormone receptors. Their ligands, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and a structurally related hormone produced in pregnancy, human chorionic gonadotropin (hCG), are large protein hormones that are extensively glycosylated. Although the primary physiologic functions of these receptors are in ovarian function and maintenance of pregnancy in human females and spermatogenesis in males, there are reports of LHRs or FSHRs involvement in disease processes both in the reproductive system and elsewhere. In this review, we evaluate the aggregation state of the structure of actively signaling LHRs or FSHRs, their functions in reproduction as well as summarizing disease processes related to receptor mutations affecting receptor function or expression in reproductive and non-reproductive tissues. We will also present novel strategies for either increasing or reducing the activity of LHRs signaling. Such approaches to modify signaling by glycoprotein receptors may prove advantageous in treating diseases relating to LHRs or FSHRs function in addition to furthering the identification of new strategies for modulating GPCR signaling.

4.
Metallomics ; 12(7): 1044-1061, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32538409

RESUMEN

The luteinizing hormone receptor (LHR), a G protein-coupled receptor (GPCRs), can initiate signaling in the presence of some vanadium-containing compounds as a result of vanadium compound interactions with the membrane lipids and/or the cell membrane lipid interface. The ability of LHR expressed in CHO cells to initiate signaling in the presence of highly charged and water-soluble polyoxovanadates (POV) including Na3[H3V10O28] (V10) and two mixed-valence heteropolyoxovanadates, K(NH4)4[H6V14O38(PO4)]·11H2O (V14) and [(CH3)4N]6[V15O36(Cl)] (V15), was investigated here. Interactions of the vanadium compounds with CHO cells decreased the packing of membrane lipids, drove aggregation of LHR and increased signal transduction by LHR. Cell responses were comparable to, or in the case of V14 and V15, greater than those seen for cells treated with human chorionic gonadotropin (hCG), a naturally-occurring LHR ligand produced in early pregnancy in humans. POV effects were observed for CHO cells where LHR was expressed at 10 000 or 32 000 LHR per cell but not when LHR was overexpressed with receptor numbers >100 000 LHR per cell. To determine which POV species were present in the cell medium during cell studies, the speciation of vanadate (V1), V10, V14 or V15 in cell medium was monitored using 51V NMR and EPR spectroscopies. We found that all the POVs initiated signaling, but V15 and V10 had the greatest effects on cell function, while V1 was significantly less active. However, because of the complex nature of vanadium compounds speciation, the effects on cell function may be due to vanadium species formed in the cell medium over time.


Asunto(s)
Aniones/metabolismo , Polielectrolitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Compuestos de Vanadio/metabolismo , Animales , Células CHO , Membrana Celular/metabolismo , Gonadotropina Coriónica/metabolismo , Cricetulus , Espectroscopía de Resonancia por Spin del Electrón , Espectroscopía de Resonancia Magnética , Receptores Acoplados a Proteínas G/genética , Vanadatos/metabolismo
5.
J Inorg Biochem ; 203: 110873, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31706224

RESUMEN

Luteinizing hormone receptors (LHR), expressed at physiological numbers <30,000 receptors per cell, translocate to and signal within membrane rafts following binding of human chorionic gonadotropin (hCG). Similarly LHR signal in cells when treated with bis(maltolato)oxovanadium(IV) (BMOV), bis(ethylmaltolato)oxovanadium(IV) (BEOV) or VOSO4, which decrease membrane lipid packing. Overexpressed LHR (>85,000 receptors per cell) are found in larger clusters in polarized homo-transfer fluorescence resonance energy transfer (homo-FRET) studies that were not affected by either hCG or vanadium compounds. Intracellular cyclic adenylate monophosphate (cAMP) levels indicate that only clustered LHR are active and produce the intracellular second messenger, cAMP. When LHR are over-expressed, cell signaling is unaffected by binding of hCG or vanadium compounds. To confirm the existence of intact complex, the EPR spectra of vanadium compounds in cell media were obtained using 1 mM BMOV, BEOV or VOSO4. These data were used to determine intact complex in a 10 µM solution and verified by speciation calculations. Effects of BMOV and BEOV samples were about two-fold greater than those of aqueous vanadium(IV) making it likely that intact vanadium complex are responsible for effects of LHR function. This represents a new mechanism for activation of a G protein-coupled receptor; perturbations in the lipid bilayer by vanadium compounds lead to aggregation and accumulation of physiological numbers of LHR in membrane raft domains where they initiate signal transduction and production of cAMP, a second messenger involved in signaling.


Asunto(s)
Complejos de Coordinación/farmacología , Microdominios de Membrana/efectos de los fármacos , Receptores de HL/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Cricetulus , Lípidos de la Membrana/metabolismo , Vanadio/química
6.
J Fluoresc ; 29(1): 53-60, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30386968

RESUMEN

We present complementary flow cytometric and microscopic imaging methods, both utilizing a membrane-targeted cAMP sensor protein ICUE3, to examine hormone-dependent signaling by the luteinizing hormone (LH) receptor in individual cells. This receptor, a seven transmembrane domain protein belonging to the GPCR family, signals by activating adenylate cyclase to increase cAMP levels. The ICUE3 sensor protein exhibits fluorescence energy transfer between its CFP and YFP moieties and the ratio of CFP emission to YFP sensitized emission (YFPSE) increases with cAMP concentration. We used multichannel flow cytometry to compare CFP emission and YFPSE from each cell and hence measure that cell's cAMP level. This technique measured changes in cAMP levels in CHO cells expressing LH receptors and stimulated by forskolin or the hormone human chorionic gonadotropin (hCG) and showed that significant cell-to-cell variations exist in such cAMP responses. Because LH receptor behavior may reflect receptor expression levels, we developed a procedure to measure numbers of particular fluorescent cell proteins from measurements of MESF bead standards for slightly different fluorophores. We find that basal cAMP levels increase substantially in cells expressing high numbers mCherry-LH receptors per cell. This suggests activation through increased inter-receptor interactions at high concentrations. We then explored a microscope-based method for single cell measurements so that responses could be correlated with specific cell morphology and with time after treatments. This showed that cell responses to hCG are fully-developed after ~100 s. Taken together, these results demonstrate the utility of fluorescence methods in exploring cAMP signaling in individual cells.


Asunto(s)
AMP Cíclico/química , Fluorescencia , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Análisis de la Célula Individual , Animales , Células CHO , Células Cultivadas , Cricetulus , AMP Cíclico/metabolismo , Humanos , Imagen Óptica , Receptores Acoplados a Proteínas G/metabolismo
7.
J Fluoresc ; 28(2): 533-542, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29397481

RESUMEN

Protein rotation in viscous environments can be measured by fluorescence depletion anisotropy (FDA) which combines long lifetimes of chromophore triplet states with the sensitivity of fluorescence excitation and detection. FDA achieves sensitivity well beyond that attainable by the more common technique of time-resolved phosphorescence anisotropy (TPA). We have now combined benefits of both time-domain and frequency-domain FDA into a single continuous technique (CFDA). Intensity and polarization of a single laser beam are modulated continuously according to a complex, repeating waveform. Fluorescence signals excited from triplet-forming fluorescent probes are digitized over recurring waveform periods by a high-speed signal averager. CFDA experiments typically involve substantial ground state depletion. Thus signals, unlike those of TPA, are not linear in the exciting light intensity and simple data analysis based on such linearity is not appropriate. An exact solution of the coupled diffusion and triplet production/decay equation describing CFDA within individual data points has been combined with simulated annealing optimization to extract triplet and anisotropy decay kinetics from experimental data. Related calculations compare possible excitation waveforms with respect to rotational information provided per fluorescence photon. We present CFDA results for the model system of eosin conjugates of carbonic anhydrase, BSA and immunoglobulin G in 90% glycerol at various temperatures and initial cellular results on eosin-IgE bound to 2H3 cell Type I Fcε receptors. We explore how CFDA reflects rotational parameters of heterogeneous systems and discuss challenges of extending this method to single cell microscopic measurements.


Asunto(s)
Polarización de Fluorescencia , Proteínas/química , Rotación , Glicerol/química , Conformación Proteica , Viscosidad
8.
Cell Biochem Biophys ; 68(3): 561-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23990106

RESUMEN

We examined the involvement of membrane microdomains during human luteinizing hormone (LH) receptor recovery from receptor desensitization after removal of bound hormone. Lateral motions of individual desensitized LH receptors expressed on the surface of Chinese hamster ovary cells and transient association of these receptors with detergent-resistant membrane (DRM) microdomains isolated using isopycnic sucrose gradient ultracentrifugation were assessed. Single particle tracking experiments showed untreated individual LH receptors to be confined within cell-surface membrane compartments with an average diameter of 199 ± 17 nm and associated with membrane fractions characteristic of bulk plasma membrane. After brief exposure to human chorionic gonadotropin (hCG), LH receptors remained for several hours desensitized to hCG challenge. Throughout this period, significantly increased numbers of LH receptors were confined within smaller diameter (<120 nm) membrane compartments and associated with DRM fragments of characteristically low density. By 5 h, when cells again produced cAMP in response to hCG, unoccupied LH receptors were found in larger 169 ± 22 nm diameter cell-surface membrane compartments and >90 % of LH receptors were again found in high-density membrane fragments characteristic of bulk plasma membrane. Taken together, these results suggest that, during recovery from LH receptor desensitization, LH receptors are both located with DRM lipid environments and confined within small, mesoscale (80-160 nm) cell-surface compartments. This may reflect hormone-driven translocation of receptors into DRM and formation there of protein aggregates too large or too rigid to permit effective signaling. Once bound hormone is removed, receptor structures would have to dissociate before receptors can again signal effectively in response to hormone challenge. Moreover, such larger protein complexes would be more easily constrained laterally by membrane structural elements and so appear resident in smaller cell-surface compartments.


Asunto(s)
Microdominios de Membrana/metabolismo , Receptores de HL/metabolismo , Animales , Células CHO , Gonadotropina Coriónica/farmacología , Cricetinae , Cricetulus , Humanos , Hormona Luteinizante/metabolismo , Microdominios de Membrana/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos
9.
Dalton Trans ; 42(33): 11912-20, 2013 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23861175

RESUMEN

Vanadium oxides (VOs) have been identified as low molecular weight sensitizing agents associated with occupational asthma and compromised pulmonary immunocompetence. Symptoms of adult onset asthma result, in part, from increased signal transduction by Type I Fcε receptors (FcεRI) leading to release of vasoactive compounds including histamine from mast cells. Exposure to (VOs) typically occurs in the form of particles which are insoluble. Upon contact with water or biological fluids, (VOs) form a series of soluble oxoanions, one of which is decavanadate, V10O28(6-) abbreviated V10, which is structurally related to a common vanadium oxide, that is vanadium pentoxide, V2O5. Here we investigate whether V10 may be initiating plasma membrane events associated with activation of FcεRI signal transduction. We show that exposure of RBL-2H3 cells to V10 causes a concentration-dependent increase in degranulation of RBL-2H3 and, in addition, an increase in plasma membrane lipid packing as measured by the fluorescent probe, di-4-ANEPPDHQ. V10 also increases FcεRI accumulation in low-density membrane fragments, i.e., lipid rafts, which may facilitate FcεRI signaling. To determine whether V10 effects on plasma membrane lipid packing were similarly observed in Langmuir monolayers formed from dipalmitoylphosphatidylcholine (DPPC), the extent of lipid packing in the presence and absence of V10 and vanadate was compared. V10 increased the surface area of DPPC Langmuir monolayers by 6% and vanadate decreased the surface area by 4%. These results are consistent with V10 interacting with this class of membrane lipids and altering DPPC packing.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Receptores de IgE/antagonistas & inhibidores , Vanadatos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Microdominios de Membrana/metabolismo , Estructura Molecular , Ratas , Receptores de IgE/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas , Vanadatos/química
10.
Dalton Trans ; 41(21): 6419-30, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22569684

RESUMEN

The effects of treatment with bis(maltolato)oxovanadium(IV) (BMOV) on protein localization in membrane microdomains were investigated by comparing the effects of insulin and treatment with BMOV on the lateral motions and compartmentalization of individual insulin receptors (IR). In addition, effects of insulin and BMOV on the association of IR, phosphorylated IR (pIR) and phosphorylated insulin receptor substrate-1 (pIRS-1) with chemically-isolated plasma membrane microdomains on rat basophilic leukemia (RBL-2H3) cells were evaluated. Single particle tracking experiments indicate that individual quantum dot-labeled IR on RBL-2H3 cells exhibit relatively unrestricted lateral diffusion of approximately 1 × 10(-10) cm(2) s(-1) and are confined in approximately 475 nm diameter cell-surface membrane compartments. After treating of RBL-2H3 cells with 10 µM BMOV, IR lateral diffusion and the size of IR-containing membrane compartments is significantly reduced to 6 × 10(-11) cm(2) s(-1) and approximately 400 nm, respectively. BMOV treatment also increases the association of IR with low-density, detergent-resistant membrane fragments isolated using isopycnic sucrose-gradient centrifugation from 2.4% for untreated cells to 25.8% for cells treated with 10 µM BMOV. Additionally, confocal fluorescence microscopic imaging of live RBL-2H3 cells labeled with the phase sensitive aminonaphthylethenylpyridinium-based dye, Di-4-ANEPPDHQ, indicates that BMOV treatment, but not insulin treatment, decreases cell-surface plasma membrane lipid order while fluorescence correlation spectroscopy measurements suggest that BMOV treatment does not affect IR surface-density or insulin binding affinity. Finally, model studies using microemulsions of cetyltrimethylammonium bromide (CTAB) micelles and (1)H NMR spectroscopy show that an oxidized form of BMOV readily localizes near the CTAB head-groups at the lipid-water interface. These observations were supported by IR spectroscopic studies using microemulsions of CTAB reverse micelles showing that both BMOV and oxidized BMOV are associated with the water pool. This conclusion is based on changes in (1)H NMR chemical shifts observed for the complex, oxidized BMOV. Moreover, these shifts appeared to be informative about the location of the complex. No differences were observed in the OD absorption peak positions for the CTAB reverse micelles prepared in the presence and absence of BMOV, oxidized BMOV or maltol. Combined, these results suggest that activation of IR signaling by both insulin and BMOV treatment involves increased association of IR with specialized, nanoscale membrane microdomains. The observed insulin-like activity of BMOV or decomposition products of BMOV may be due to changes in cell-surface membrane lipid order rather than due to direct interactions with IR.


Asunto(s)
Hipoglucemiantes/farmacología , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Pironas/farmacología , Receptor de Insulina/metabolismo , Vanadatos/farmacología , Animales , Línea Celular Tumoral , Cetrimonio , Compuestos de Cetrimonio/química , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Micelas , Movimiento/efectos de los fármacos , Oxidación-Reducción , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas
11.
Cell Biochem Biophys ; 62(3): 441-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22101510

RESUMEN

We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)(3)). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 µM Cr(pic)(3). These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)(3) but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)(3) did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)(3) likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)(3) involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)(3) are due to changes in membrane lipid order rather than to direct interactions with IR.


Asunto(s)
Insulina/farmacología , Microdominios de Membrana/metabolismo , Ácidos Picolínicos/farmacología , Receptor de Insulina/metabolismo , Animales , Línea Celular , Detergentes/química , Hipoglucemiantes/farmacología , Quelantes del Hierro/farmacología , Microdominios de Membrana/efectos de los fármacos , Fosforilación , Unión Proteica , Compuestos de Piridinio/química , Ratas , Especificidad por Sustrato
12.
Biochim Biophys Acta ; 1818(3): 467-73, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22024024

RESUMEN

Recent evidence suggests that, after binding insulin, insulin receptors (IR) interact with specialized, cholesterol-containing, membrane microdomains and components of the actin cytoskeleton. Using single particle tracking techniques, we examined how binding of insulin, depletion of membrane cholesterol and disruption of actin filaments affect the lateral diffusion of individual quantum dot-labeled native IR on live rat basophilic leukemia 2H3 cells. We also examined the effects of similar treatments on IR clustering and multivalent insulin binding on these cells using both photon counting histogram analysis and polarization-based fluorescence resonance energy homo-transfer imaging. Our analyses indicate that binding of insulin to IR on these cells is multivalent, involving at least two insulin molecules per IR as labeling concentrations approach 1µM. Insulin binding also reduces lateral diffusion of IR and the size of membrane compartments accessed by IR. For IR that have not bound insulin, lateral diffusion of IR and the size of membrane compartments accessed by IR increase after disrupting actin filaments or depleting membrane cholesterol. However, clustering of insulin-occupied IR is reduced only by disrupting actin filaments or by fixing cells with paraformaldehyde prior to exposure to insulin, but not by depleting membrane cholesterol. Thus, it appears that, although restriction of IR lateral diffusion on these cells is sensitive to both actin filament dynamics and membrane cholesterol content, clustering of insulin-occupied IR primarily involves an actin-dependent mechanism.


Asunto(s)
Actinas/metabolismo , Colesterol/metabolismo , Insulina/metabolismo , Microdominios de Membrana/metabolismo , Receptor de Insulina/metabolismo , Animales , Línea Celular , Polarización de Fluorescencia/métodos , Humanos , Unión Proteica/fisiología , Puntos Cuánticos , Ratas
13.
Biophys Chem ; 159(2-3): 303-10, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21924541

RESUMEN

We used fluorescence correlation spectroscopy to examine the binding of insulin, insulin-like growth factor 1 (IGF1) and anti-receptor antibodies to insulin receptors (IR) and IGF1 receptors (IGF1R) on individual 2H3 rat basophilic leukemia cells. Experiments revealed two distinct classes of insulin binding sites with K(D) of 0.11 nM and 75 nM, respectively. IGF1 competes with insulin for a portion of the low-affinity insulin binding sites with K(D) of 0.14 nM and for the high-affinity insulin binding sites with K(D) of 10 nM. Dissociation rate constants of insulin and IGF1 were determined to be 0.015 min(-1) and 0.013 min(-1), respectively, allowing estimation of ligand association rate constants. Combined, our results suggest that, in addition to IR and IGF1R homodimers, substantial numbers of hybrid IR-IGF1R heterodimers are present on the surface of these cells.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Anticuerpos/inmunología , Sitios de Unión , Línea Celular Tumoral , Insulina/química , Factor I del Crecimiento Similar a la Insulina/química , Unión Proteica , Ratas , Receptor IGF Tipo 1/inmunología , Receptor de Insulina/inmunología , Espectrometría de Fluorescencia
14.
J Biol Chem ; 286(34): 29818-27, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21690095

RESUMEN

Single particle tracking was used to evaluate lateral motions of individual FLAG-tagged human luteinizing hormone (LH) receptors expressed on CHO cells and native LH receptors on both KGN human granulosa-derived tumor cells and M17 human neuroblastoma cells before and after exposure to human chorionic gonadotropin (hCG). Compared with LH receptors on untreated cells, LH receptors on cells treated with 100 nm hCG exhibit restricted lateral diffusion and are confined in small, nanometer-scale, membrane compartments. Similar to LH receptors labeled with Au-hCG, LH receptors labeled with gold-deglycosylated hCG, an hCG antagonist, also exhibit restricted lateral diffusion and are confined in nanoscale membrane compartments on KGN cells treated with 100 nm hCG. LH receptor point mutants lacking potential palmitoylation sites remain in large compartments despite treatment with 100 nm hCG as do LH receptors on cells treated with cytochalasin D. Finally, both polarization homotransfer fluorescence resonance energy transfer imaging and photon counting histogram analysis indicate that treatment with hCG induces aggregation of YFP-coupled LH receptors stably expressed on CHO cells. Taken together, our results demonstrate that binding of hCG induces aggregation of LH receptors within nanoscale, cell surface membrane compartments, that hCG binding also affects the lateral motions of antagonist binding LH receptors, and that receptor surface densities must be considered in evaluating the extent of hormone-dependent receptor aggregation.


Asunto(s)
Gonadotropina Coriónica/farmacología , Microdominios de Membrana/metabolismo , Receptores de HL/metabolismo , Animales , Células CHO , Gonadotropina Coriónica/metabolismo , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lipoilación/fisiología , Microdominios de Membrana/genética , Receptores de HL/genética
15.
J Biol Inorg Chem ; 16(6): 961-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21667212

RESUMEN

The interactions of metabolites of the antidiabetic vanadium-containing drug bis(maltolato)oxovanadium(IV) (BMOV) with lipid interface model systems were investigated and the results were used to describe a potentially novel mechanism by which these compounds initiate membrane-receptor-mediated signal transduction. Specifically, spectroscopic studies probed the BMOV oxidation and hydrolysis product interaction with interfaces created from cetyltrimethylammonium bromide (CTAB) which mimics the positively charged head group on phosphatidylcholine. (1)H and (51)V NMR spectroscopies were used to determine the location of the dioxobis(maltolato)oxovanadate(V) and the maltol ligand in micelles and reverse micelles by measuring changes in the chemical shift, signal linewidth, and species distribution. Both micelles and reverse micelles interacted similarly with the complex and the ligand, suggesting that interaction is strong as anticipated by Coulombic attraction between the positively charged lipid head group and the negatively charged complex and deprotonated ligand. The nature of the model system was confirmed using dynamic light scattering studies and conductivity measurements. Interactions of the complex/ligand above and below the critical micelle concentration of micelle formation were different, with much stronger interactions when CTAB was in the form of a micelle. Both the complex and the ligand penetrated the lipid interface and were located near the charged head group. These studies demonstrate that a lipid-like interface affects the stability of the complex and raise the possibility that ligand exchange at the interface may be important for the mode of action for these systems. Combined, these studies support recently reported in vivo observations of BMOV penetration into 3T3-L1 adipocyte membranes and increased translocation of a glucose transporter to the plasma membrane.


Asunto(s)
Membrana Celular/química , Complejos de Coordinación/química , Hipoglucemiantes/química , Compuestos de Vanadio/química , Células CACO-2 , Cetrimonio , Compuestos de Cetrimonio/química , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hidrólisis , Hipoglucemiantes/uso terapéutico , Espectroscopía de Resonancia Magnética , Micelas , Estructura Molecular , Tensoactivos/química , Compuestos de Vanadio/uso terapéutico
16.
Chem Biodivers ; 5(8): 1558-1570, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18729092

RESUMEN

There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.


Asunto(s)
Lípidos de la Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Compuestos Organometálicos/farmacología , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Vanadio/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Lípidos de la Membrana/química , Estructura Molecular , Ratas , Estándares de Referencia
17.
Biophys Chem ; 126(1-3): 209-17, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16797115

RESUMEN

The Mast cell Function-associated Antigen (MAFA) is a membrane glycoprotein on rat mast cells (RBL-2H3) expressed at a ratio of approximately 1:30 with respect to the Type I Fc epsilon receptor (Fc epsilon RI). Despite this stoichiometry, clustering MAFA by its specific mAb G63 substantially inhibits secretion of both granular and de novo synthesized mediators induced upon Fc epsilon RI aggregation. Since the Fc epsilon RIs apparently signal from within raft micro-environments, we investigated possible co-localization of MAFA within these membrane compartments containing aggregated Fc epsilon RI. We used cholera toxin B subunit (CTB) to cluster the raft component ganglioside GM1 and studied the effects of this perturbation on rotation of Fc epsilon RI and MAFA by time-resolved phosphorescence anisotropy of erythrosin-conjugated probes. CTB treatment would be expected to substantially inhibit rotation of raft-associated molecules. Experimentally, CTB has no effect on rotational parameters such as the long-time anisotropy (r(infinity)) of unperturbed Fc epsilon RI or MAFA. However, on cells where Fc epsilon RI-IgE has previously been clustered by antigen (DNP(14)-BSA), CTB treatment increases the Fc epsilon RI-IgE's r(infinity) by 0.010 and MAFA's by 0.014. Similarly, CTB treatment of cells where MAFA had been clustered by mAb G63 increases MAFA's r(infinity) by 0.010 but leaves Fc epsilon RI's unaffected. Evaluation of raft localization of Fc epsilon RI and MAFA using sucrose gradient ultracentrifugation of Triton X-100 treated membrane fragments demonstrates that a significant fraction of MAFA molecules sediments with rafts when Fc epsilon RI is clustered by antigen or when MAFA itself is clustered by mAb G63. The large excess of Fc epsilon RI over MAFA explains why clustering MAFA does not substantively affect Fc epsilon RI dynamics. Moreover, in single-particle tracking studies of individual Fc epsilon RI-IgE or MAFA molecules, these proteins, upon clustering by antigen, move into small membrane compartments of reduced, but similar, dimensions. This provides additional indication of constitutive interactions between Fc epsilon RI and MAFA. Taken together, these results of distinct methodologies suggest that MAFA functions within raft microdomains of the RBL-2H3 cell membrane and thus in close proximity to the Fc epsilon RI which themselves signal from within the raft environment.


Asunto(s)
Lectinas Tipo C/análisis , Lectinas Tipo C/metabolismo , Mastocitos/inmunología , Glicoproteínas de Membrana/análisis , Glicoproteínas de Membrana/metabolismo , Microdominios de Membrana/química , Receptores de IgE/análisis , Receptores de IgE/metabolismo , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Toxina del Cólera/farmacología , Mastocitos/química , Mastocitos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Ratas
18.
Mol Cell Endocrinol ; 260-262: 65-72, 2007 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-17045393

RESUMEN

Several naturally occurring mutations in human luteinizing hormone receptors (LHR) at position 578 are associated with constitutive activation of the receptor. To determine whether human LHRs that signal in the absence of ligand are self-associated, fluorescence resonance energy transfer (FRET) between receptors was evaluated. Values for FRET between wild type LHR in the absence of ligand were less than 1% and increased significantly to over 11% after exposure to hCG. Constitutively active receptors exhibited 11-15% FRET efficiency in the absence of hormone and these values did not change with hCG treatment. A large fraction of constitutively active LHR-D578H receptors were also associated with so-called plasma membrane rafts. Disruption of these membrane microdomains reduced FRET efficiency but did not affect signalling through cAMP. Thus, in the absence of ligand, constitutively active receptors are self-associated and located in high buoyancy membrane fractions, both characteristics of the hormone-treated wild type receptor.


Asunto(s)
Microdominios de Membrana/metabolismo , Receptores de HL/química , Receptores de HL/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Transferencia de Energía/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hormona Luteinizante/farmacología , Microdominios de Membrana/efectos de los fármacos , Mutación/genética , Fotoblanqueo/efectos de los fármacos , Estructura Cuaternaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , beta-Ciclodextrinas/farmacología
19.
Anal Biochem ; 356(1): 30-5, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16875658

RESUMEN

Lateral diffusion measurements on cell membrane molecules, most commonly accomplished through fluorescence photobleaching recovery (FPR or FRAP), provide information on such molecules' size, environment, and participation in intermolecular interactions. However, difficulties arise in FPR measurements of lateral dynamics of materials, such as visible fluorescent protein (VFP) fusion proteins, where fluorescent intracellular species contribute to the fluorescence recovery signal and thus distort measurements intended to reflect surface molecules only. A new method helps eliminate these difficulties. In total internal reflection interference fringe FPR, interfering laser beams enter a 1.65-numercial aperture (NA) Olympus objective at the periphery of the back focal plane where the NA exceeds 1.38. This creates an extended interference pattern totally internally reflected at the coverslip-medium interface which excites fluorescence only from fluorescent molecules located where the cell contacts the coverslip. The large illuminated area interrogates many more membrane receptors than spot methods and hence obtains more diffusion information per measurement while rejecting virtually all interfering intracellular fluorescence. We report successful measurements of membrane dynamics of both VFP-containing and conventionally labeled molecules by this technique and compare them with results of other FPR methods.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
20.
Endocrinology ; 147(4): 1789-95, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16410308

RESUMEN

Receptor-mediated signal transduction by G protein-coupled receptors can involve redistribution of plasma membrane receptors into membrane structures that are characterized by insolubility in Triton X-100 and low buoyant density in sucrose gradients. Here we describe the translocation of wild-type (wt) rat LH receptors (LHR-wt) from the bulk membrane into membrane microdomains (rafts) after the binding of human chorionic gonadotropin (hCG). In sucrose gradient ultracentrifugation of plasma membranes from cells stably expressing FLAG-tagged LHR-wt, receptors were located in high-density membrane fractions before binding of hormone and in low-density fractions after hCG treatment. Receptor translocation to low-density sucrose fractions did not occur when cells were pretreated with 1% methyl-beta-cyclodextrin, which reduces membrane cholesterol and disrupts rafts. Single-particle tracking of individual FLAG-LHR-wt receptors showed that hCG-treated receptors become confined in small compartments with a diameter of 86 +/- 36 nm, significantly smaller than 230 +/- 79 nm diameter regions accessed by the untreated receptor. Receptors were no longer confined in these small compartments after disruption of rafts by methyl-beta-cyclodextrin, a treatment that also decreased levels of cAMP in response to hCG. Finally, translocation of LHR into rafts required a functional hormone-receptor complex but did not occur after extensive receptor cross-linking that elevated cAMP levels. Thus, retention of LHR in rafts or small membrane compartments is a characteristic of functional, hormone-occupied LHR-wt. Although raft translocation was not essential for cAMP production, it may be necessary for optimizing hormone-mediated signaling.


Asunto(s)
Gonadotropina Coriónica/metabolismo , Microdominios de Membrana/metabolismo , Receptores de HL/metabolismo , Animales , Células CHO , Colesterol/fisiología , Cricetinae , AMP Cíclico/fisiología , Transporte de Proteínas , Ratas , Transducción de Señal , beta-Ciclodextrinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA