Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Med Eng Technol ; : 1-11, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39049730

RESUMEN

Prolonged air leakage (AL) following pulmonary resections leads to prolonged hospital stay and post-operative complications. Intra- and postoperative quantification of AL might be useful for improving treatment decisions, but these measurements have not been characterised. AL calculations based on inspiratory and expiratory tidal volumes were investigated in an Intensive Care Unit mechanical ventilator circuit (Servo-I). AL was also measured by a digital chest drainage system. This study shows that AL measurements increase in accuracy when corrected for baseline deviations (R: 0.904 > 0.997, p < 0.001). Bland-Altman analysis revealed a funnel-shape, indicative of a detection threshhold. Corrected measurements were most accurate when averaged over five breaths and AL was >500 mL/min, with an estimated mean systemic bias of 7.4% (95%-limits of agreement [LoA]: 1.1%-13.7%) at 500 mL/min air leak. Breath-by-breath analysis showed most accurate results at AL >20 mL/breath (R: 0.989-0.991, p < 0.001) at tidal volumes between 350-600 mL. The digital drain had a mean systemic bias of -11.1% (95%-LoA: -18.9% to -3.3%) with homogenous scatter in Bland-Altman analysis and a strong correlation to the control measurement over a large range (0-2000mL/min, R: 0.999, p < 0.001). This study indicates that the Servo-I can be used for air leak quantification in clinically relevant ranges (>500 mL/min), but is unsuited for small leak detection due to a detection threshold. Researchers and clinicians should be aware of varying accuracy and interoperability characteristics between AL measurement devices.

3.
Chest ; 162(6): e343-e345, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36494141
6.
Crit Care ; 24(1): 628, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33126902

RESUMEN

BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .


Asunto(s)
Estimulación Eléctrica/métodos , Músculos Respiratorios/inervación , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Estimulación Eléctrica/instrumentación , Estudios de Factibilidad , Femenino , Mortalidad Hospitalaria/tendencias , Humanos , Masculino , Medicare/estadística & datos numéricos , Medicare/tendencias , Modelos de Riesgos Proporcionales , Respiración Artificial/instrumentación , Respiración Artificial/métodos , Músculos Respiratorios/fisiopatología , Estudios Retrospectivos , Estados Unidos
8.
Respir Care ; 65(9): 1315-1322, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32156788

RESUMEN

BACKGROUND: Patient-ventilator synchrony in patients with COPD is at risk during noninvasive ventilation (NIV). NIV in neurally-adjusted ventilatory assist (NAVA) mode improves synchrony compared to pressure support ventilation (PSV). The current study investigated patient-ventilator interaction at 2 levels of NAVA and PSV mode in subjects with COPD exacerbation. METHODS: NIV was randomly applied at 2 levels (5 and 15 cm H2O) of PSV and NAVA. Patient-ventilator interaction was evaluated by comparing airway pressure and electrical activity of the diaphragm waveforms with automated computer algorithms. RESULTS: 8 subjects were included. Trigger delay was longer in PSV high (268 ± 112 ms) than in PSV low (161 ± 118 ms, P = .043), and trigger delay during NAVA was shorter than PSV for both low support (49 ± 24 ms for NAVA, P = .035) and high support (79 ± 276 ms for NAVA, P = .003). No difference in cycling error for low and high levels of PSV (PSV low -100 ± 114 ms and PSV high 56 ± 315 ms) or NAVA (NAVA low -5 ± 18 ms, NAVA high 12 ± 36 ms) and no difference between PSV and NAVA was found. CONCLUSIONS: Increasing PSV levels during NIV caused a progressive mismatch between neural effort and pneumatic timing. Patient-ventilator interaction during NAVA was more synchronous than during PSV, independent of inspiratory support level. (ClinicalTrials.gov registration NCT01791335.).


Asunto(s)
Soporte Ventilatorio Interactivo , Ventilación no Invasiva , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Respiración con Presión Positiva , Enfermedad Pulmonar Obstructiva Crónica/terapia , Ventiladores Mecánicos
10.
Respir Physiol Neurobiol ; 259: 53-57, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30026086

RESUMEN

BACKGROUND: Non-invasive ventilation (NIV) provides ventilatory support for patients with respiratory failure. However, the glottis can act as a closing valve, limiting effectiveness of NIV. This study investigates the patency of the glottis during NIV in patients with acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD). METHODS: Electrical activity of the diaphragm, flow, pressure and videolaryngoscopy were acquired. NIV was randomly applied in pressure support (PSV) and neurally adjusted ventilatory assist (NAVA) mode with two levels of support. The angle formed by the vocal cords represented glottis patency. RESULTS: Eight COPD patients with acute exacerbation requiring NIV were included. No differences were found in median glottis angle during inspiration or peak inspiratory effort between PSV and NAVA at low and high support levels. CONCLUSIONS: The present study showed that glottis patency during inspiration in patients with an acute exacerbation of COPD is not affected by mode (PSV or NAVA) or level of assist (5 or 15 cm H2O) during NIV.


Asunto(s)
Glotis/patología , Glotis/fisiología , Ventilación no Invasiva/métodos , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Anciano , Diafragma/fisiopatología , Femenino , Humanos , Laringoscopía , Masculino , Persona de Mediana Edad , Estadísticas no Paramétricas , Grabación de Videodisco
11.
Anesthesiology ; 129(3): 490-501, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29771711

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Respiratory muscle weakness in critically ill patients is associated with difficulty in weaning from mechanical ventilation. Previous studies have mainly focused on inspiratory muscle activity during weaning; expiratory muscle activity is less well understood. The current study describes expiratory muscle activity during weaning, including tonic diaphragm activity. The authors hypothesized that expiratory muscle effort is greater in patients who fail to wean compared to those who wean successfully. METHODS: Twenty adult patients receiving mechanical ventilation (more than 72 h) performed a spontaneous breathing trial. Tidal volume, transdiaphragmatic pressure, diaphragm electrical activity, and diaphragm neuromechanical efficiency were calculated on a breath-by-breath basis. Inspiratory (and expiratory) muscle efforts were calculated as the inspiratory esophageal (and expiratory gastric) pressure-time products, respectively. RESULTS: Nine patients failed weaning. The contribution of the expiratory muscles to total respiratory muscle effort increased in the "failure" group from 13 ± 9% at onset to 24 ± 10% at the end of the breathing trial (P = 0.047); there was no increase in the "success" group. Diaphragm electrical activity (expressed as the percentage of inspiratory peak) was low at end expiration (failure, 3 ± 2%; success, 4 ± 6%) and equal between groups during the entire expiratory phase (P = 0.407). Diaphragm neuromechanical efficiency was lower in the failure versus success groups (0.38 ± 0.16 vs. 0.71 ± 0.36 cm H2O/µV; P = 0.054). CONCLUSIONS: Weaning failure (vs. success) is associated with increased effort of the expiratory muscles and impaired neuromechanical efficiency of the diaphragm but no difference in tonic activity of the diaphragm.


Asunto(s)
Espiración/fisiología , Respiración Artificial/métodos , Insuficiencia Respiratoria/fisiopatología , Insuficiencia Respiratoria/terapia , Músculos Respiratorios/fisiología , Desconexión del Ventilador/métodos , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Respiración Artificial/efectos adversos , Mecánica Respiratoria/fisiología , Insuficiencia del Tratamiento , Desconexión del Ventilador/efectos adversos
12.
Am J Respir Crit Care Med ; 195(8): 1033-1042, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27748627

RESUMEN

RATIONALE: Controlled mechanical ventilation is used to deliver lung-protective ventilation in patients with acute respiratory distress syndrome. Despite recognized benefits, such as preserved diaphragm activity, partial support ventilation modes may be incompatible with lung-protective ventilation due to high Vt and high transpulmonary pressure. As an alternative to high-dose sedatives and controlled mechanical ventilation, pharmacologically induced neuromechanical uncoupling of the diaphragm should facilitate lung-protective ventilation under partial support modes. OBJECTIVES: To investigate whether partial neuromuscular blockade can facilitate lung-protective ventilation while maintaining diaphragm activity under partial ventilatory support. METHODS: In a proof-of-concept study, we enrolled 10 patients with lung injury and a Vt greater than 8 ml/kg under pressure support ventilation (PSV) and under sedation. After baseline measurements, rocuronium administration was titrated to a target Vt of 6 ml/kg during neurally adjusted ventilatory assist (NAVA). Thereafter, patients were ventilated in PSV and NAVA under continuous rocuronium infusion for 2 hours. Respiratory parameters, hemodynamic parameters, and blood gas values were measured. MEASUREMENTS AND MAIN RESULTS: Rocuronium titration resulted in significant declines of Vt (mean ± SEM, 9.3 ± 0.6 to 5.6 ± 0.2 ml/kg; P < 0.0001), transpulmonary pressure (26.7 ± 2.5 to 10.7 ± 1.2 cm H2O; P < 0.0001), and diaphragm electrical activity (17.4 ± 2.3 to 4.5 ± 0.7 µV; P < 0.0001), and could be maintained under continuous rocuronium infusion. During titration, pH decreased (7.42 ± 0.02 to 7.35 ± 0.02; P < 0.0001), and mean arterial blood pressure increased (84 ± 6 to 99 ± 6 mm Hg; P = 0.0004), as did heart rate (83 ± 7 to 93 ± 8 beats/min; P = 0.0004). CONCLUSIONS: Partial neuromuscular blockade facilitates lung-protective ventilation during partial ventilatory support, while maintaining diaphragm activity, in sedated patients with lung injury.


Asunto(s)
Androstanoles/farmacología , Diafragma/efectos de los fármacos , Diafragma/fisiología , Bloqueo Neuromuscular/métodos , Respiración Artificial/métodos , Síndrome de Dificultad Respiratoria/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fármacos Neuromusculares no Despolarizantes/farmacología , Rocuronio , Volumen de Ventilación Pulmonar/fisiología
13.
Crit Care ; 20(1): 121, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145818

RESUMEN

BACKGROUND: Physiological dead space (VD/VT) represents the fraction of ventilation not participating in gas exchange. In patients with acute respiratory distress syndrome (ARDS), VD/VT has prognostic value and can be used to guide ventilator settings. However, VD/VT is rarely calculated in clinical practice, because its measurement is perceived as challenging. Recently, a novel technique to calculate partial pressure of carbon dioxide in alveolar air (PACO2) using volumetric capnography (VCap) was validated. The purpose of the present study was to evaluate how VCap and other available techniques to measure PACO2 and partial pressure of carbon dioxide in mixed expired air (PeCO2) affect calculated VD/VT. METHODS: In a prospective, observational study, 15 post-cardiac surgery patients and 15 patients with ARDS were included. PACO2 was measured using VCap to calculate Bohr dead space or substituted with partial pressure of carbon dioxide in arterial blood (PaCO2) to calculate the Enghoff modification. PeCO2 was measured in expired air using three techniques: Douglas bag (DBag), indirect calorimetry (InCal), and VCap. Subsequently, VD/VT was calculated using four methods: Enghoff-DBag, Enghoff-InCal, Enghoff-VCap, and Bohr-VCap. RESULTS: PaCO2 was higher than PACO2, particularly in patients with ARDS (post-cardiac surgery PACO2 = 4.3 ± 0.6 kPa vs. PaCO2 = 5.2 ± 0.5 kPa, P < 0.05; ARDS PACO2 = 3.9 ± 0.8 kPa vs. PaCO2 = 6.9 ± 1.7 kPa, P < 0.05). There was good agreement in PeCO2 calculated with DBag vs. VCap (post-cardiac surgery bias = 0.04 ± 0.19 kPa; ARDS bias = 0.03 ± 0.27 kPa) and relatively low agreement with DBag vs. InCal (post-cardiac surgery bias = -1.17 ± 0.50 kPa; ARDS mean bias = -0.15 ± 0.53 kPa). These differences strongly affected calculated VD/VT. For example, in patients with ARDS, VD/VTcalculated with Enghoff-InCal was much higher than Bohr-VCap (VD/VT Enghoff-InCal = 66 ± 10 % vs. VD/VT Bohr-VCap = 45 ± 7 %; P < 0.05). CONCLUSIONS: Different techniques to measure PACO2 and PeCO2 result in clinically relevant mean and individual differences in calculated VD/VT, particularly in patients with ARDS. Volumetric capnography is a promising technique to calculate true Bohr dead space. Our results demonstrate the challenges clinicians face in interpreting an apparently simple measurement such as VD/VT.


Asunto(s)
Espacio Muerto Respiratorio/fisiología , Síndrome de Dificultad Respiratoria/fisiopatología , Anciano , Anciano de 80 o más Años , Capnografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Estudios Prospectivos , Intercambio Gaseoso Pulmonar/fisiología , Síndrome de Dificultad Respiratoria/complicaciones
14.
Crit Care ; 20(1): 103, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27091359

RESUMEN

Respiratory muscle dysfunction may develop rapidly in critically ill ventilated patients and is associated with increased morbidity, length of intensive care unit stay, costs, and mortality. This review briefly discusses the pathophysiology of respiratory muscle dysfunction in intensive care unit patients and then focuses on strategies that prevent the development of muscle weakness or, if weakness has developed, how respiratory muscle function may be improved. We propose a simple strategy for how these can be implemented in clinical care.


Asunto(s)
Debilidad Muscular/complicaciones , Debilidad Muscular/terapia , Respiración Artificial/efectos adversos , Músculos Respiratorios/fisiopatología , Enfermedad Crítica/enfermería , Enfermedad Crítica/terapia , Medicina Basada en la Evidencia/métodos , Humanos , Unidades de Cuidados Intensivos , Debilidad Muscular/prevención & control , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...