Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 12836, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150640

RESUMEN

Pro-inflammatory and amyloidogenic S100A9 protein is an important contributor to Alzheimer's disease (AD) pathology. Traumatic brain injury (TBI) is viewed as a precursor state for AD. Here we have shown that S100A9-driven amyloid-neuroinflammatory cascade was initiated in TBI and may serve as a mechanistic link between TBI and AD. By analyzing the TBI and AD human brain tissues, we demonstrated that in post-TBI tissues S100A9, produced by neurons and microglia, becomes drastically abundant compared to Aß and contributes to both precursor-plaque formation and intracellular amyloid oligomerization. Conditions implicated in TBI, such as elevated S100A9 concentration, acidification and fever, provide strong positive feedback for S100A9 nucleation-dependent amyloid formation and delay in its proteinase clearance. Consequently, both intracellular and extracellular S100A9 oligomerization correlated with TBI secondary neuronal loss. Common morphology of TBI and AD plaques indicated their similar initiation around multiple aggregation centers. Importantly, in AD and TBI we found S100A9 plaques without Aß. S100A9 and Aß plaque pathology was significantly advanced in AD cases with TBI history at earlier age, signifying TBI as a risk factor. These new findings highlight the detrimental consequences of prolonged post-TBI neuroinflammation, which can sustain S100A9-driven amyloid-neurodegenerative cascade as a specific mechanism leading to AD development.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/metabolismo , Calgranulina B/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Humanos , Inmunohistoquímica , Espacio Intracelular , Ratones , Modelos Biológicos , Neuronas/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-28325066

RESUMEN

OBJECTIVE: To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. METHODS: Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. RESULTS: Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72HRE. In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. CONCLUSION: Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/genética , Superóxido Dismutasa-1/sangre , Superóxido Dismutasa-1/genética , Anciano , Esclerosis Amiotrófica Lateral/diagnóstico , Estudios de Cohortes , Activación Enzimática/fisiología , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad
4.
Immunity ; 45(1): 106-18, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27421701

RESUMEN

The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1ß (IL-1ß) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection.


Asunto(s)
Ataxia Telangiectasia/genética , Pulmón/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Daño del ADN , Reparación del ADN , Humanos , Inmunidad Innata , Inflamasomas/fisiología , Interleucina-1beta , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
5.
J Biol Chem ; 290(28): 17339-48, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25971975

RESUMEN

Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of α and ß subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive α6 and α4ß4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each α polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an α4 complex, which can interact with ß2 to form a non-productive α4ß2 complex. Other allosteric effectors induce a mixture of α2 and α4 forms, with the former being able to interact with ß2 to form active α2ß2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/enzimología , Ribonucleótido Reductasas/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Sitio Alostérico , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Nucleótidos de Desoxiadenina/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Cinética , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Pseudomonas aeruginosa/genética , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Eliminación de Secuencia
6.
Nucleic Acids Res ; 41(22): 10334-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038466

RESUMEN

The kinase ATR is activated by RPA-coated single-stranded DNA generated at aberrant replicative structures and resected double strand breaks. While many hundred candidate ATR substrates have been identified, the essential role of ATR in the replicative stress response has impeded the study of ATR kinase-dependent signalling. Using recently developed selective drugs, we show that ATR inhibition has a significantly more potent effect than ATM inhibition on ionizing radiation (IR)-mediated cell killing. Transient ATR inhibition for a short interval after IR has long-term consequences that include an accumulation of RPA foci and a total abrogation of Chk1 S345 phosphorylation. We show that ATR kinase activity in G1 phase cells is important for survival after IR and that ATR colocalizes with RPA in the absence of detectable RPA S4/8 phosphorylation. Our data reveal that, unexpectedly, ATR kinase inhibitors may be more potent cellular radiosensitizers than ATM kinase inhibitors, and that this is associated with a novel role for ATR in G1 phase cells.


Asunto(s)
Reparación del ADN , Fase G1/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Fase G1/efectos de la radiación , Humanos , Proteínas Quinasas/metabolismo , Tolerancia a Radiación , Radiación Ionizante , Proteína de Replicación A/análisis , Transducción de Señal
7.
Protein Eng Des Sel ; 26(7): 445-52, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23592737

RESUMEN

The homohexameric enzyme methylglyoxal synthase (MGS) converts dihydroxyacetone phosphate (DHAP) to methylglyoxal and phosphate. This enzyme is allosterically inhibited by phosphate. The allosteric signal induced by phosphate in MGS from Thermus sp. GH5 (TMGS) has been tracked by site-directed mutagenesis, from the binding site of phosphate to the pathways that transmit the signal, and finally to the active site which is the receiver of the signal. In TMGS, Ser-55 distinguishes the inhibitory phosphate from the phosphoryl group of the substrate, DHAP, and transmits the allosteric signal through Pro-82, Arg-97 and Val-101 to the active site. Furthermore, the addition of a C-terminal tail to TMGS reinforces the allosteric signal by introducing a new salt bridge between Asp-10 and an Arg in this tail. Lastly, the active site amino acid, Gly-56, is shown to be involved in both allostery and phosphate elimination step from DHAP by TMGS. Interestingly, some of the mutations also trigger homotropic allostery, supporting the hypothesis that allostery is an intrinsic property of all dynamic proteins. The details of the TMGS allosteric network discussed in this study can serve as a model system for understanding the enigmatic allosteric mechanism of other proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Oxígeno/química , Liasas de Carbono-Oxígeno/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Sitios de Unión , Liasas de Carbono-Oxígeno/genética , Dominio Catalítico , Dihidroxiacetona Fosfato/química , Dihidroxiacetona Fosfato/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Serina/genética , Serina/metabolismo , Thermus/enzimología , Thermus/metabolismo
8.
J Biol Chem ; 287(21): 17628-17636, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22442154

RESUMEN

Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (k(cat)) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.


Asunto(s)
Evolución Molecular , Nucleótidos/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Timidina Quinasa/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Nucleótidos/química , Nucleótidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Especificidad por Sustrato , Timidina Quinasa/química , Timidina Quinasa/genética , Trypanosoma brucei brucei/genética
9.
Structure ; 17(11): 1442-52, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19913479

RESUMEN

The general transcription factor IID (TFIID) is required for initiation of RNA polymerase II-dependent transcription at many eukaryotic promoters. TFIID comprises the TATA-binding protein (TBP) and several conserved TBP-associated factors (TAFs). Recognition of the core promoter by TFIID assists assembly of the preinitiation complex. Using cryo-electron microscopy in combination with methods for ab initio single-particle reconstruction and heterogeneity analysis, we have produced density maps of two conformational states of Schizosaccharomyces pombe TFIID, containing and lacking TBP. We report that TBP-binding is coupled to a massive histone-fold domain rearrangement. Moreover, docking of the TBP-TAF1(N-terminus) atomic structure to the TFIID map and reconstruction of a TAF-promoter DNA complex helps to account for TAF-dependent regulation of promoter-TBP and promoter-TAF interactions.


Asunto(s)
ADN/química , Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , Schizosaccharomyces/química , Factor de Transcripción TFIID/química , Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/metabolismo , Factor de Transcripción TFIID/ultraestructura
10.
J Biol Chem ; 283(51): 35310-8, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18835811

RESUMEN

Ribonucleotide reductase (RNR) is a key enzyme for the synthesis of the four DNA building blocks. Class Ia RNRs contain two subunits, denoted R1 (alpha) and R2 (beta). These enzymes are regulated via two nucleotide-binding allosteric sites on the R1 subunit, termed the specificity and overall activity sites. The specificity site binds ATP, dATP, dTTP, or dGTP and determines the substrate to be reduced, whereas the overall activity site binds dATP (inhibitor) or ATP. By using gas-phase electrophoretic mobility macromolecule analysis and enzyme assays, we found that the Escherichia coli class Ia RNR formed an inhibited alpha(4)beta(4) complex in the presence of dATP and an active alpha(2)beta(2) complex in the presence of ATP (main substrate: CDP), dTTP (substrate: GDP) or dGTP (substrate: ADP). The R1-R2 interaction was 30-50 times stronger in the alpha(4)beta(4) complex than in the alpha(2)beta(2) complex, which was in equilibrium with free alpha(2) and beta(2) subunits. Studies of a known E. coli R1 mutant (H59A) showed that deficient dATP inhibition correlated with reduced ability to form alpha(4)beta(4) complexes. ATP could also induce the formation of a generally inhibited alpha(4)beta(4) complex in the E. coli RNR but only when used in combination with high concentrations of the specificity site effectors, dTTP/dGTP. Both allosteric sites are therefore important for alpha(4)beta(4) formation and overall activity regulation. The E. coli RNR differs from the mammalian enzyme, which is stimulated by ATP also in combination with dGTP/dTTP and forms active and inactive alpha(6)beta(2) complexes.


Asunto(s)
Sitio Alostérico/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nucleótidos/metabolismo , Ribonucleótido Reductasas/metabolismo , Regulación Alostérica/fisiología , Proteínas de Escherichia coli/genética , Estructura Cuaternaria de Proteína/fisiología , Especificidad por Sustrato/fisiología
11.
J Biol Chem ; 283(9): 5380-8, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18167353

RESUMEN

African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.


Asunto(s)
Adenina/química , Adenosina Quinasa/química , Antimetabolitos/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Vidarabina/química , Adenina/metabolismo , Adenosina Quinasa/antagonistas & inhibidores , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Animales , Antimetabolitos/uso terapéutico , Catálisis , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Leishmania donovani/enzimología , Leishmania donovani/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato/fisiología , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/enzimología , Tripanosomiasis Africana/genética , Vidarabina/uso terapéutico
12.
Nucleic Acids Res ; 36(2): 393-403, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18039713

RESUMEN

The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg(2+) or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN Helicasas/genética , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Proteínas Mitocondriales , Estructura Terciaria de Proteína , Eliminación de Secuencia
13.
J Biol Chem ; 281(38): 27705-11, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16861739

RESUMEN

Ribonucleotide reductase synthesizes deoxyribonucleotides, which are essential building blocks for DNA synthesis. The mammalian ribonucleotide reductase is described as an alpha(2)beta(2) complex consisting of R1 (alpha) and R2 (beta) proteins. ATP stimulates and dATP inhibits enzyme activity by binding to an allosteric site called the activity site on the R1 protein. Despite the opposite effects by ATP and dATP on enzyme activity, both nucleotides induce formation of R1 oligomers. By using a new technique termed Gas-phase Electrophoretic-Mobility Macromolecule Analysis (GEMMA), we have found that the ATP/dATP-induced R1 oligomers have a defined size (hexamers) and can interact with the R2 dimer to form an enzymatically active protein complex (alpha(6)beta(2)). The newly discovered alpha(6)beta(2) complex can either be in an active or an inhibited state depending on whether ATP or dATP is bound. Our results suggest that this protein complex is the major form of ribonucleotide reductase at physiological levels of R1-R2 protein and nucleotides.


Asunto(s)
Estructura Cuaternaria de Proteína , Ribonucleótido Reductasas/química , Adenosina Trifosfato/farmacología , Animales , Cromatografía en Gel , Dimerización , Electroforesis , Espectrometría de Masas , Ratones , Ribonucleótido Reductasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...