Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell Metab ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39357523

RESUMEN

HumanIslets.com supports diabetes research by offering easy access to islet phenotyping data, analysis tools, and data download. It includes molecular omics, islet and cellular function assays, tissue processing metadata, and phenotypes from 547 donors. As it expands, the resource aims to improve human islet data quality, usability, and accessibility.

2.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948734

RESUMEN

Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the research community. This platform, which presently includes data on 547 human islet donors, allows users to access linked datasets describing molecular profiles, islet function and donor phenotypes, and to perform various statistical and functional analyses at the donor, islet and single-cell levels. As an example of the analytic capacity of this resource we show a dissociation between cell culture effects on transcript and protein expression, and an approach to correct for exocrine contamination found in hand-picked islets. Finally, we provide an example workflow and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase levels at the transcript and protein level, insulin secretion and islet cell phenotypes. HumanIslets.com provides a growing and adaptable set of resources and tools to support the metabolism and diabetes research community.

3.
Cell Metab ; 36(7): 1619-1633.e5, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959864

RESUMEN

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid. However, 9% of donors' islets had amino acid responses, and 8% had fatty acid responses that were larger than their glucose-stimulated insulin responses. We leveraged this heterogeneity and used multi-omics to identify molecular correlates of nutrient responsiveness, as well as proteins and mRNAs altered in type 2 diabetes. We also examined nutrient-stimulated insulin release from stem cell-derived islets and observed responsiveness to fat but not carbohydrate or protein-potentially a hallmark of immaturity. Understanding the diversity of insulin responses to carbohydrate, protein, and fat lays the groundwork for personalized nutrition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Secreción de Insulina , Insulina , Islotes Pancreáticos , Proteómica , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Femenino , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Persona de Mediana Edad , Nutrientes/metabolismo , Adulto , Glucosa/metabolismo , Anciano , Ácidos Grasos/metabolismo
4.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38970533

RESUMEN

Dietary carbohydrates raise blood glucose levels, and limiting carbohydrate intake improves glycemia in patients with type 2 diabetes. Low carbohydrate intake (< 25 g) allows the body to utilize fat as its primary fuel. As a consequence of increased fatty acid oxidation, the liver produces ketones to serve as an alternative energy source. ß-Hydroxybutyrate (ßHB) is the most abundant ketone. While ßHB has a wide range of functions outside of the pancreas, its direct effects on islet cell function remain understudied. We examined human islet secretory response to acute racemic ßHB treatment and observed increased insulin secretion at a low glucose concentration of 3 mM. Because ßHB is a chiral molecule, existing as both R and S forms, we further studied insulin and glucagon secretion following acute treatment with individual ßHB enantiomers in human and C57BL/6J mouse islets. We found that acute treatment with R-ßHB increased insulin secretion and decreased glucagon secretion at physiological glucose concentrations in both human and mouse islets. Proteomic analysis of human islets treated with R-ßHB over 72 hours showed altered abundance of proteins that may promote islet cell health and survival. Collectively, our data show that physiological concentrations of ßHB influence hormone secretion and signaling within pancreatic islets.


Asunto(s)
Ácido 3-Hidroxibutírico , Glucagón , Secreción de Insulina , Insulina , Islotes Pancreáticos , Ratones Endogámicos C57BL , Ácido 3-Hidroxibutírico/farmacología , Animales , Humanos , Glucagón/metabolismo , Secreción de Insulina/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Ratones , Insulina/metabolismo , Masculino , Glucosa/metabolismo , Femenino
5.
medRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496562

RESUMEN

Population level variation and molecular mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized despite ramifications for personalized nutrition. Here, we define prototypical insulin secretion dynamics in response to the three macronutrients in islets from 140 cadaveric donors, including those diagnosed with type 2 diabetes. While islets from the majority of donors exhibited the expected relative response magnitudes, with glucose being highest, amino acid moderate, and fatty acid small, 9% of islets stimulated with amino acid and 8% of islets stimulated with fatty acids had larger responses compared with high glucose. We leveraged this insulin response heterogeneity and used transcriptomics and proteomics to identify molecular correlates of specific nutrient responsiveness, as well as those proteins and mRNAs altered in type 2 diabetes. We also examine nutrient-responsiveness in stem cell-derived islet clusters and observe that they have dysregulated fuel sensitivity, which is a hallmark of functionally immature cells. Our study now represents the first comparison of dynamic responses to nutrients and multi-omics analysis in human insulin secreting cells. Responses of different people's islets to carbohydrate, protein, and fat lay the groundwork for personalized nutrition. ONE-SENTENCE SUMMARY: Deep phenotyping and multi-omics reveal individualized nutrient-specific insulin secretion propensity.

6.
Front Mol Neurosci ; 16: 1243499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348236

RESUMEN

The choroid plexus (ChP) is a highly vascularized tissue lining the ventricular space of the brain. The ChP generates cerebrospinal fluid (CSF) and forms a protective barrier in the central nervous system (CNS). Recently, a three-dimensional human pluripotent stem cell (hPSC)-derived ChP organoid model has been developed. This model generates cystic structures that are filled with a fluid resembling CSF and are surrounded by an epithelial layer expressing ependymal choroid plexus-specific markers. Here we describe a method to generate these choroid plexus organoids using a commercial kit and methods to extract the CSF-like fluid for use in downstream analysis.

7.
J Am Chem Soc ; 144(2): 832-844, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985906

RESUMEN

Owing to its roles in human health and disease, the modification of nuclear, cytoplasmic, and mitochondrial proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) has emerged as a topic of great interest. Despite the presence of O-GlcNAc on hundreds of proteins within cells, only two enzymes regulate this modification. One of these enzymes is O-GlcNAcase (OGA), a dimeric glycoside hydrolase that has a deep active site cleft in which diverse substrates are accommodated. Chemical tools to control OGA are emerging as essential resources for helping to decode the biochemical and cellular functions of the O-GlcNAc pathway. Here we describe rationally designed bicyclic thiazolidine inhibitors that exhibit superb selectivity and picomolar inhibition of human OGA. Structures of these inhibitors in complex with human OGA reveal the basis for their exceptional potency and show that they extend out of the enzyme active site cleft. Leveraging this structure, we create a high affinity chemoproteomic probe that enables simple one-step purification of endogenous OGA from brain and targeted proteomic mapping of its post-translational modifications. These data uncover a range of new modifications, including some that are less-known, such as O-ubiquitination and N-formylation. We expect that these inhibitors and chemoproteomics probes will prove useful as fundamental tools to decipher the mechanisms by which OGA is regulated and directed to its diverse cellular substrates. Moreover, the inhibitors and structures described here lay out a blueprint that will enable the creation of chemical probes and tools to interrogate OGA and other carbohydrate active enzymes.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Compuestos Bicíclicos con Puentes/química , Inhibidores Enzimáticos/química , Histona Acetiltransferasas/metabolismo , Hialuronoglucosaminidasa/metabolismo , Secuencia de Aminoácidos , Encéfalo/metabolismo , Compuestos Bicíclicos con Puentes/metabolismo , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/metabolismo , Histona Acetiltransferasas/antagonistas & inhibidores , Humanos , Hialuronoglucosaminidasa/antagonistas & inhibidores , Espectrometría de Masas , Péptidos/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Relación Estructura-Actividad , Tiazolidinas/química , Tiazolidinas/metabolismo , Cadena alfa de beta-Hexosaminidasa/antagonistas & inhibidores , Cadena alfa de beta-Hexosaminidasa/metabolismo
8.
Nat Commun ; 11(1): 3048, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546688

RESUMEN

Nanomaterials in the blood must mitigate the immune response to have a prolonged vascular residency in vivo. The composition of the protein corona that forms at the nano-biointerface may be directing this, however, the possible correlation of corona composition with blood residency is currently unknown. Here' we report a panel of new soft single molecule polymer nanomaterials (SMPNs) with varying circulation times in mice (t1/2ß ~ 22 to 65 h) and use proteomics to probe protein corona at the nano-biointerface to elucidate the mechanism of blood residency of nanomaterials. The composition of the protein opsonins on SMPNs is qualitatively and quantitatively dynamic with time in circulation. SMPNs that circulate longer are able to clear some of the initial surface-bound common opsonins, including immunoglobulins, complement, and coagulation proteins. This continuous remodelling of protein opsonins may be an important decisive step in directing elimination or residence of soft nanomaterials in vivo.


Asunto(s)
Materiales Biocompatibles/farmacocinética , Nanoestructuras/administración & dosificación , Proteínas Opsoninas/sangre , Polímeros/metabolismo , Administración Intravenosa , Animales , Circulación Sanguínea , Femenino , Semivida , Humanos , Masculino , Ratones Endogámicos BALB C , Nanoestructuras/química , Proteínas Opsoninas/química , Proteínas Opsoninas/metabolismo , Polímeros/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Espectrometría de Masas en Tándem , Distribución Tisular
9.
Proc Natl Acad Sci U S A ; 116(33): 16326-16331, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31366629

RESUMEN

Phase separation drives numerous cellular processes, ranging from the formation of membrane-less organelles to the cooperative assembly of signaling proteins. Features such as multivalency and intrinsic disorder that enable condensate formation are found not only in cytosolic and nuclear proteins, but also in membrane-associated proteins. The ABC transporter Rv1747, which is important for Mycobacterium tuberculosis (Mtb) growth in infected hosts, has a cytoplasmic regulatory module consisting of 2 phosphothreonine-binding Forkhead-associated domains joined by an intrinsically disordered linker with multiple phospho-acceptor threonines. Here we demonstrate that the regulatory modules of Rv1747 and its homolog in Mycobacterium smegmatis form liquid-like condensates as a function of concentration and phosphorylation. The serine/threonine kinases and sole phosphatase of Mtb tune phosphorylation-enhanced phase separation and differentially colocalize with the resulting condensates. The Rv1747 regulatory module also phase-separates on supported lipid bilayers and forms dynamic foci when expressed heterologously in live yeast and M. smegmatis cells. Consistent with these observations, single-molecule localization microscopy reveals that the endogenous Mtb transporter forms higher-order clusters within the Mycobacterium membrane. Collectively, these data suggest a key role for phase separation in the function of these mycobacterial ABC transporters and their regulation via intracellular signaling.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas de la Membrana/genética , Mycobacterium tuberculosis/genética , Tuberculosis/genética , Transportadoras de Casetes de Unión a ATP/química , Citosol/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/ultraestructura , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/ultraestructura , Proteínas Nucleares/genética , Fosforilación/genética , Transducción de Señal/genética , Imagen Individual de Molécula , Tuberculosis/microbiología
10.
mBio ; 8(2)2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28377529

RESUMEN

Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene (ipdAB) and an acyl-CoA reductase gene (ipdC). In the presence of cholesterol, ΔipdC and ΔipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα-H-4α(carboxyl-CoA)-5-hydroxy-7aß-methylhexahydro-1-indanone (5-OH HIC-CoA) and (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A ΔfadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by ΔipdF and ΔechA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a ΔipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis.IMPORTANCE Bacteria are the only known steroid degraders, but the pathway responsible for degrading the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants. Using a series of mutants in M. tuberculosis and related bacteria, we identified a number of novel CoA thioesters as pathway intermediates. Analysis of the metabolites combined with enzymological studies establishes how the last two steroid rings are hydrolytically opened by enzymes encoded by the KstR2 regulon. Our results provide experimental evidence for novel ring-degrading enzymes, significantly advance our understanding of bacterial steroid catabolism, and identify a previously uncharacterized cholesterol-dependent toxicity that may facilitate the development of novel tuberculosis therapeutics.


Asunto(s)
Colesterol/metabolismo , Redes y Vías Metabólicas/genética , Mycobacterium tuberculosis/metabolismo , Eliminación de Gen , Metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Rhodococcus/genética , Rhodococcus/metabolismo
11.
J Neurotrauma ; 34(12): 2054-2068, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28276985

RESUMEN

Efforts to validate novel therapies in acute clinical trials for spinal cord injury (SCI) are impeded by the lack of objective quantitative measures that reflect injury severity and accurately predict neurological recovery. Therefore, a strong rationale exists for establishing neurochemical biomarkers that objectively quantify injury severity and predict outcome. Here, we conducted a targeted proteomics analysis of cerebrospinal fluid (CSF) samples derived from 29 acute SCI patients (American Spinal Injury Association Impairment Scale [AIS] A, B, or C) acquired at 24, 48, and 72 h post-injury. From a total of 165 proteins, we identified 27 potential biomarkers of injury severity (baseline AIS A, B, or C), with triosephosphate isomerase having the strongest relationship to AIS grade. The majority of affected proteins (24 of 27) were more abundant in samples from AIS A patients than in those from AIS C patients, suggesting that for the most part, these proteins are released into the CSF more readily with more severe trauma to the spinal cord. We then analyzed the relationship between CSF protein abundance and neurological recovery. For AIS grade improvement over 6 months, we identified 34 proteins that were associated with AIS grade conversion (p < 0.05); however, these associations were not statistically significant after adjusting for multiple comparisons. For total motor score (TMS) recovery over 6 months, after adjusting for baseline neurological injury level, we identified 46 proteins with a statistically significant association with TMS recovery. Twenty-two of these proteins were among the 27 proteins that were related to baseline AIS grade, consistent with the notion that protein markers that reflect a more severe injury also appropriately predict a poorer recovery of motor function. In summary, this study provides a description of the CSF proteome changes that occur after acute human SCI, and reveals a number of protein candidates for further validation as potential biomarkers of injury severity.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Puntaje de Gravedad del Traumatismo , Proteómica/métodos , Recuperación de la Función/fisiología , Índice de Severidad de la Enfermedad , Traumatismos de la Médula Espinal/líquido cefalorraquídeo , Enfermedad Aguda , Adulto , Anciano , Biomarcadores/líquido cefalorraquídeo , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad
12.
J Biol Chem ; 291(21): 11300-12, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27026706

RESUMEN

Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.


Asunto(s)
Proteínas Aviares/sangre , Proteínas Aviares/genética , Aves/sangre , Aves/genética , Evolución Molecular , Transcortina/genética , Transcortina/metabolismo , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Pollos/sangre , Pollos/genética , Cristalografía por Rayos X , Pinzones/sangre , Pinzones/genética , Glicosilación , Modelos Moleculares , Filogenia , Ratas , Homología de Secuencia de Aminoácido , Gorriones/sangre , Gorriones/genética , Transcortina/química
13.
J Proteome Res ; 14(2): 967-76, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25569337

RESUMEN

Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.


Asunto(s)
Activadores de GTP Fosfohidrolasa/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Proteómica/métodos , Plaquetas , Células Cultivadas , Cromatografía de Fase Inversa , Humanos , Marcaje Isotópico , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Activación Plaquetaria/fisiología , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
14.
Anal Chem ; 84(9): 4221-6, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22494041

RESUMEN

Atmospheric pressure electron capture dissociation (AP-ECD) is an emerging technique with the potential to be a more accessible alternative to conventional ECD/electron transfer dissociation (ETD) methods because it can be implemented using a stand-alone ion source device suitable for use with any existing or future electrospray ionization mass spectrometer. With AP-ECD, no modification of the main instrument is required, so it may easily be retrofitted to instruments not originally equipped with ECD/ETD capabilities. Here, we present our first purpose-built AP-ECD source and demonstrate its use in conjunction with capillary LC for the analysis of substance P, a tryptic digest of bovine serum albumin, and a phosphopeptide mixture. Quality ECD spectra were obtained for all the samples at the low femtomole level, proving that LC-AP-ECD-MS is suitable for the structural analysis of peptides and protein digests, in this case using an unmodified quadrupole time-of-flight mass spectrometer built ca. 2002.


Asunto(s)
Espectrometría de Masas/instrumentación , Fosfopéptidos/química , Albúmina Sérica Bovina/química , Sustancia P/química , Secuencia de Aminoácidos , Animales , Presión Atmosférica , Bovinos , Cromatografía Liquida/instrumentación , Electrones , Diseño de Equipo , Límite de Detección , Datos de Secuencia Molecular
15.
J Am Soc Mass Spectrom ; 22(10): 1699-706, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21952883

RESUMEN

We introduce a new atmospheric pressure-electron capture dissociation (AP-ECD) source in which conventional nanospray emitters are coupled with the source block and photoionization lamp of a PhotoSpray APPI source. We also introduce procedures for data collection and processing, aimed at maximizing the signal-to-background ratio of ECD products. Representative data from Substance P are presented to demonstrate the performance of the technique. Further, we demonstrate the effects of two important experimental variables, source temperature and vacuum-interface declustering potential (DP), on the method. Last, we show that even when a high source temperature is used to maximize efficiency, AP-ECD fragments of a model phosphorylated peptide retain the modification.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/química , Electrones , Diseño de Equipo , Calor , Iones/química , Fosfopéptidos/química , Sustancia P/química
16.
Mol Cell ; 43(4): 673-80, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21855805

RESUMEN

Methylation of specific lysine residues in the C terminus of p53 is thought to govern p53-dependent transcription following genotoxic and oncogenic stress. In particular, Set7/9 (KMT7)-mediated monomethylation of human p53 at lysine 372 (p53K372me1) was suggested to be essential for p53 activation in human cell lines. This finding was confirmed in a Set7/9 knockout mouse model (Kurash et al., 2008). In an independent knockout mouse strain deficient in Set7/9, we have investigated its involvement in p53 regulation and find that cells from these mice are normal in their ability to induce p53-dependent transcription following genotoxic and oncogenic insults. Most importantly, we detect no impairment in canonical p53 functions in these mice, indicating that Set7/9-mediated methylation of p53 does not seem to represent a major regulatory event and does not appreciably control p53 activity in vivo.


Asunto(s)
Proteína Metiltransferasas/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis/genética , Ciclo Celular , Senescencia Celular/genética , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Ratones , Ratones Endogámicos C57BL , Proteína Metiltransferasas/metabolismo , Proteína Metiltransferasas/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
J Proteome Res ; 10(2): 656-68, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21067242

RESUMEN

Experiments to probe for protein-protein interactions are the focus of functional proteomic studies, thus proteomic data repositories are increasingly likely to contain a large cross-section of such information. Here, we use the Global Proteome Machine database (GPMDB), which is the largest curated and publicly available proteomic data repository derived from tandem mass spectrometry, to develop an in silico protein interaction analysis tool. Using a human histone protein for method development, we positively identified an interaction partner from each histone protein family that forms the histone octameric complex. Moreover, this method, applied to the α subunits of the human proteasome, identified all of the subunits in the 20S core particle. Furthermore, we applied this approach to human integrin αIIb and integrin ß3, a major receptor involved in the activation of platelets. We identified 28 proteins, including a protein network for integrin and platelet activation. In addition, proteins interacting with integrin ß1 obtained using this method were validated by comparing them to those identified in a formaldehyde-supported coimmunoprecipitation experiment, protein-protein interaction databases and the literature. Our results demonstrate that in silico protein interaction analysis is a novel tool for identifying known/candidate protein-protein interactions and proteins with shared functions in a protein network.


Asunto(s)
Bases de Datos de Proteínas , Mapeo de Interacción de Proteínas/métodos , Proteoma/análisis , Proteómica/métodos , Simulación por Computador , Humanos , Proteoma/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
18.
Rapid Commun Mass Spectrom ; 24(22): 3303-8, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-20973005

RESUMEN

An improved in-source atmospheric pressure-electron capture dissociation (AP-ECD) method is described. Building upon the early example of Laprévote's group, photoelectrons generated within a commercial PhotoSpray atmospheric pressure photoionization source are used to induce ECD of multiply charged peptide ions originating from an upstream heated nebulizer device. To attain high sensitivity, the method makes use of a novel electropneumatic-heated nebulizer to assist in the creation and transmission of multiply charged ions from sample solutions. Here, we demonstrate that readily interpretable AP-ECD spectra of infused peptides can be acquired from 100 fmol sample consumed, on a chromatographic time scale, using a conventional quadrupole time-of-flight (Q-ToF) mass spectrometer otherwise incapable of ECD/ETD experiments. Though much work remains to be done to develop and characterize the method, the results indicate that AP-ECD has the potential to be a practical new tool for the mass spectrometric analysis of peptides and proteins.


Asunto(s)
Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Péptidos/química , Presión Atmosférica , Modelos Moleculares , Fotoquímica/métodos , Sustancia P/química
19.
Expert Rev Mol Med ; 12: e30, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20860882

RESUMEN

In recent years, the technology and methods widely available for mass spectrometry (MS)-based proteomics have increased in power and potential, allowing the study of protein-level processes occurring in biological systems. Although these methods remain an active area of research, established techniques are already helping answer biological questions. Here, this recent evolution of MS-based proteomics and its applications are reviewed, including standard methods for protein and peptide separation, biochemical fractionation, quantitation, targeted MS approaches such as selected reaction monitoring, data analysis and bioinformatics. Recent research in many of these areas reveals that proteomics has moved beyond simply cataloguing proteins in biological systems and is finally living up to its initial potential - as an essential tool to aid related disciplines, notably health research. From here, there is great potential for MS-based proteomics to move beyond basic research, into clinical research and diagnostics.


Asunto(s)
Investigación Biomédica/tendencias , Espectrometría de Masas/tendencias , Proteómica/tendencias , Humanos
20.
Anal Chim Acta ; 676(1-2): 60-7, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20800743

RESUMEN

Cross-linking of proteins in a complex requires the chemical modification of the proteins in order to form a covalent link. This can be achieved in vivo using formaldehyde as it is small and rapidly permeates the cell membrane. Previous model studies of the speed and specificity of the first step of this reaction on peptides have suggested that residue accessibility and sequence micro-environment play a significant role in the production of the reactive intermediate necessary for cross-linking. This dependency was therefore further investigated on model proteins, which contain a more complex tertiary structure. Under mild reaction conditions, similar to those used for in vivo protein cross-linking, it was found that the vast majority of modification occurred on lysines, tertiary structure and solvent accessible surface area played a major role in regulating the extent of formaldehyde-induced modifications, and that the modifications on a folded protein did not significantly affect its tertiary structural stability.


Asunto(s)
Formaldehído/química , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Reactivos de Enlaces Cruzados/química , Mioglobina/química , Estructura Terciaria de Proteína , Serina Endopeptidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...