Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Forum Infect Dis ; 11(5): ofae250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38798899

RESUMEN

We present an immunocompromised patient with a multiresistant herpes simplex virus-1 reactivation with a rare mutation (A605V) in the viral DNA polymerase gene. Next-generation sequencing suggests the presence of multiple drug-resistant strains before treatment and altered ratios during treatment, affecting the clinical response to aciclovir and foscarnet.

2.
FEMS Microbes ; 5: xtae014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38813098

RESUMEN

Enterococcus faecium is an opportunistic pathogen able to colonize the intestines of hospitalized patients. This initial colonization is an important step in the downstream pathogenesis, which includes outgrowth of the intestinal microbiota and potential infection of the host. The impact of intestinal overgrowth on host-enterococcal interactions is not well understood. We therefore applied a RNAseq approach in order to unravel the transcriptional dynamics of E. faecium upon co-culturing with human derived colonic epithelium. Co-cultures of colonic epithelium with a hospital-associated vancomycin resistant (vanA-type) E. faecium (VRE) showed that VRE resided on top of the colonic epithelium when analyzed by microscopy. RNAseq revealed that exposure to the colonic epithelium resulted in upregulation of 238 VRE genes compared to the control condition, including genes implicated in pili expression, conjugation (plasmid_2), genes related to sugar uptake, and biofilm formation (chromosome). In total, 260 were downregulated, including the vanA operon located on plasmid_3. Pathway analysis revealed an overall switch in metabolism to amino acid scavenging and reduction. In summary, our study demonstrates that co-culturing of VRE with human colonic epithelium promotes an elaborate gene response in VRE, enhancing our insight in host-E. faecium interactions, which might facilitate the design of novel anti-infectivity strategies.

3.
Microbiol Spectr ; 11(4): e0006323, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37404183

RESUMEN

The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Humanos , Perros , Animales , Infecciones por Escherichia coli/microbiología , Proteínas Bacterianas/genética , ARN Ribosómico 16S/genética , Escherichia coli/genética , beta-Lactamasas/genética , Bacterias/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Antibacterianos/farmacología
4.
Sci Rep ; 13(1): 3444, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859567

RESUMEN

The endometrial microbiota composition may be associated with implantation success. However, a 'core' composition has not yet been defined. This exploratory study analysed the endometrial microbiota by 16S rRNA sequencing (V1-V2 region) of 141 infertile women whose first IVF/ICSI cycle failed and compared the microbiota profiles of women with and without a live birth within 12 months of follow-up, and by infertility cause and type. Lactobacillus was the most abundant genus in the majority of samples. Women with a live birth compared to those without had significantly higher Lactobacillus crispatus relative abundance (RA) (p = 0.029), and a smaller proportion of them had ≤ 10% L. crispatus RA (42.1% and 70.4%, respectively; p = 0.015). A smaller proportion of women in the male factor infertility group had ≤ 10% L. crispatus RA compared to women in the unexplained and other infertility causes groups combined (p = 0.030). Women with primary infertility compared to secondary infertility had significantly higher L. crispatus RA (p = 0.004); lower proportions of them had ≤ 10% L. crispatus RA (p = 0.009) and > 10% Gardnerella vaginalis RA (p = 0.019). In conclusion, IVF/ICSI success may be associated with L. crispatus RA and secondary infertility with endometrial dysbiosis, more often than primary infertility. These hypotheses should be tested in rigorous well-powered longitudinal studies.


Asunto(s)
Infertilidad Femenina , Infertilidad Masculina , Microbiota , Humanos , Femenino , Masculino , Embarazo , Nacimiento Vivo , ARN Ribosómico 16S , Inyecciones de Esperma Intracitoplasmáticas
5.
J Med Microbiol ; 71(8)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36006824

RESUMEN

Introduction. Haemophilus influenzae is a commensal of the respiratory tract that is frequently present in cystic fibrosis (CF) patients and may cause infection. Antibiotic resistance is well described for CF strains, and virulence factors have been proposed.Hypothesis/Gap. The genetic diversity of H. influenzae strains present in the lungs of persons with CF is largely unknown despite the fact that this organism is considered to be a pathogen in this condition. The aim was to establish the genetic diversity and susceptibility of H. influenzae strains from persons with CF, and to screen the whole genomes of these strains for the presence of antibiotic resistance determinants and proposed virulence factors.Methods. A total of 67 strains, recovered from respiratory samples from persons with CF from the UK (n=1), Poland (n=2), Spain (n=24) and the Netherlands (n=40), were subjected to whole-genome sequencing using Illumina technology and tested for antibiotic susceptibility. Forty-nine of these strains (one per different sequence type) were analysed for encoded virulence factors and resistance determinants.Results. The 67 strains represented 49 different sequence types. Susceptibility testing showed that all strains were susceptible to aztreonam, ciprofloxacin, imipenem and tetracycline. Susceptibility to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanic acid, cefuroxime, cefixime, ceftriaxone, cefepime, meropenem, clarithromycin, co-trimoxazole and levofloxacin ranged from 70.2-98.5%. Only 6/49 strains (12.2%) harboured acquired resistance genes. Mutations associated with a ß-lactamase-negative ampicillin-resistant phenotype were present in four strains (8.2 %). The potential virulence factors, urease, haemoglobin- and haptoglobin-binding protein/carbamate kinase, and OmpP5 (OmpA), were encoded in more than half of the strains. The genes for HMW1, HMW2, H. influenzae adhesin, a IgA-specific serine endopeptidase autotransporter precursor, a TonB-dependent siderophore, an ABC-transporter ATP-binding protein, a methyltransferase, a BolA-family transcriptional regulator, glycosyltransferase Lic2B, a helix-turn-helix protein, an aspartate semialdehyde dehydrogenase and another glycosyltransferase were present in less than half of the strains.Conclusion. The H. influenzae strains showed limited levels of resistance, with the highest being against co-trimoxazole. Sequences encoding a carbamate kinase and a haemoglobin- and haemoglobin-haptoglobin-binding-like protein, a glycosyl transferase and an urease may aid the colonization of the CF lung. The adhesins and other identified putative virulence factors did not seem to be necessary for colonization.


Asunto(s)
Fibrosis Quística , Infecciones por Haemophilus , Haemophilus influenzae/clasificación , Haemophilus influenzae/aislamiento & purificación , Fibrosis Quística/complicaciones , Farmacorresistencia Bacteriana , Genoma Bacteriano , Infecciones por Haemophilus/tratamiento farmacológico , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/patogenicidad , Humanos , Pruebas de Sensibilidad Microbiana , Factores de Virulencia , Secuenciación Completa del Genoma
6.
Sci Rep ; 12(1): 1892, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115599

RESUMEN

The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.


Asunto(s)
Bacterias/genética , Dieta , Farmacorresistencia Bacteriana/genética , Conducta Alimentaria , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Adulto , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Dieta Vegana , Dieta Vegetariana , Heces/microbiología , Femenino , Humanos , Masculino , Carne , Metagenoma , Metagenómica , Persona de Mediana Edad , Países Bajos , Valor Nutritivo , Alimentos Marinos , Factores de Tiempo , Verduras
7.
mSystems ; 6(4): e0015221, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34282937

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen and often colonizes pigs. To lower the risk of MRSA transmission to humans, a reduction of MRSA prevalence and/or load in pig farms is needed. The nasal microbiome contains commensal species that may protect against MRSA colonization and may be used to develop competitive exclusion strategies. To obtain a comprehensive understanding of the species that compete with MRSA in the developing porcine nasal microbiome, and the moment of MRSA colonization, we analyzed nasal swabs from piglets in two litters. The swabs were taken longitudinally, starting directly after birth until 6 weeks. Both 16S rRNA and tuf gene sequencing data with different phylogenetic resolutions and complementary culture-based and quantitative real-time PCR (qPCR)-based MRSA quantification data were collected. We employed a compositionally aware bioinformatics approach (CoDaSeq + rmcorr) for analysis of longitudinal measurements of the nasal microbiota. The richness and diversity in the developing nasal microbiota increased over time, albeit with a reduction of Firmicutes and Actinobacteria, and an increase of Proteobacteria. Coabundant groups (CAGs) of species showing strong positive and negative correlation with colonization of MRSA and S. aureus were identified. Combining 16S rRNA and tuf gene sequencing provided greater Staphylococcus species resolution, which is necessary to inform strategies with potential protective effects against MRSA colonization in pigs. IMPORTANCE The large reservoir of methicillin-resistant Staphylococcus aureus (MRSA) in pig farms imposes a significant zoonotic risk. An effective strategy to reduce MRSA colonization in pig farms is competitive exclusion whereby MRSA colonization can be reduced by the action of competing bacterial species. We complemented 16S rRNA gene sequencing with Staphylococcus-specific tuf gene sequencing to identify species anticorrelating with MRSA colonization. This approach allowed us to elucidate microbiome dynamics and identify species that are negatively and positively associated with MRSA, potentially suggesting a route for its competitive exclusion.

9.
Artículo en Inglés | MEDLINE | ID: mdl-33139278

RESUMEN

The increasing prevalence of multidrug-resistant Klebsiella pneumoniae has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPSs). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, their modification by cationic groups, and by the hydroxylation of acyl groups of lipid A. Here, we study the in vitro evolutionary trajectories toward colistin resistance in four clinical K. pneumoniae complex strains and their impact on fitness and virulence characteristics. Through population sequencing during in vitro evolution, we found that colistin resistance develops through a combination of single nucleotide polymorphisms, insertions and deletions, and the integration of insertion sequence elements, affecting genes associated with LPS biosynthesis and modification and capsule structures. Colistin resistance decreased the maximum growth rate of one K. pneumoniaesensu stricto strain, but not those of the other three K. pneumoniae complex strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and l-Ara4N addition. K. pneumoniaesensu stricto strains exhibited cross-resistance to LL-37, in contrast to the Klebsiella variicola subsp. variicola strain. Virulence, as determined in a Caenorhabditis elegans survival assay, was increased in two colistin-resistant strains. Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the life span of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.


Asunto(s)
Colistina , Infecciones por Klebsiella , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Humanos , Klebsiella , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Virulencia
10.
Front Immunol ; 11: 1245, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636843

RESUMEN

Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.


Asunto(s)
Inmunoglobulina A/inmunología , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/inmunología , Enfermedades Pulmonares/inmunología , Orofaringe/microbiología , Adolescente , Adulto , Niño , Estudios Transversales , Femenino , Humanos , Inmunoglobulina A/sangre , Masculino , Adulto Joven
11.
Bioinformatics ; 36(12): 3874-3876, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32271863

RESUMEN

SUMMARY: Plasmids can horizontally transmit genetic traits, enabling rapid bacterial adaptation to new environments and hosts. Short-read whole-genome sequencing data are often applied to large-scale bacterial comparative genomics projects but the reconstruction of plasmids from these data is facing severe limitations, such as the inability to distinguish plasmids from each other in a bacterial genome. We developed gplas, a new approach to reliably separate plasmid contigs into discrete components using sequence composition, coverage, assembly graph information and network partitioning based on a pruned network of plasmid unitigs. Gplas facilitates the analysis of large numbers of bacterial isolates and allows a detailed analysis of plasmid epidemiology based solely on short-read sequence data. AVAILABILITY AND IMPLEMENTATION: Gplas is written in R, Bash and uses a Snakemake pipeline as a workflow management system. Gplas is available under the GNU General Public License v3.0 at https://gitlab.com/sirarredondo/gplas.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma Bacteriano , Programas Informáticos , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Plásmidos/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
12.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32217675

RESUMEN

Haemophilus parainfluenzae is considered part of the normal oropharyngeal flora but is known to occasionally cause infections. It is closely related to Haemophilus influenzae Here, we report the genome sequence of H. parainfluenzae COPD-014-E1 O, which was cultured from the sputum of a patient with chronic obstructive pulmonary disease.

13.
BMC Res Notes ; 13(1): 10, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907003

RESUMEN

OBJECTIVE: The Pseudomonas koreensis group bacteria are usually found in soil and are associated with plants. Currently they are poorly described. Here we report on the whole genome sequence of a bacterial isolate from a patient with bronchiectasis that was first identified as P. koreensis, and on its position in the P. koreensis group. RESULTS: Strain 16-537536 was isolated from a patient with bronchiectasis from Spain and initially identified by MALDI-TOF as P. koreensis, a member of the Pseudomonas fluorescens complex. However, the average nucleotide identity analysis (ANIb) and whole genome alignments of the draft genome sequence of this strain showed it to be a member of the P. koreensis group of the P. fluorescens complex, but belonging to an undescribed species. In addition, based on ANIb analysis, the P. koreensis group contains several other unnamed species. Several genes for putative virulence factors were identified. The only antibiotic resistance gene present in strain 16-537536 was a class C ß-lactamase. The correct identification of bacterial species from patients is of utmost importance in order to understand their pathogenesis and to track the potential spread of pathogens between patients. Whole genome sequence data should be included for the description of new species.


Asunto(s)
Bronquiectasia/microbiología , Genoma Bacteriano , Pseudomonas fluorescens/genética , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Anciano , Secuencia de Bases , Humanos , Persona de Mediana Edad , Filogenia
14.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31591122

RESUMEN

Objectives. A large OXA-48 outbreak in the Netherlands involved the spread of OXA-48producing Enterobacteriaceae among at least 118 patients, suggesting horizontal transfer of this resistance gene through one or more plasmids. Elucidating transmission dynamics of resistance plasmids is hampered by the low resolution of classic typing methods. This study aimed to investigate the molecular epidemiology of plasmids carrying OXA-48 carbapenemase using a next-generation sequencing approach.Methods. A total of 68 OXA-48-producing Enterobacteriaceae isolated from the hospital outbreak, as well as 22 non-outbreak related OXA-48-producing Enterobacteriaceae from the Netherlands, Libya and Turkey were selected. Plasmids were sequenced using the Illumina Miseq platform, and read sets were assembled and analysed.Results. In all plasmids bla OXA-48 was embedded in transposon Tn1999.2 and located on a ca. 62 kb IncL/M conjugative plasmid in 14 different species. There were a maximum of 2 SNPs (single nucleotide polymorphisms) between the core sequence alignment of all plasmids. Closely related sequence variants of this plasmid were detected in non-outbreak isolates from the Netherlands and other countries. Thirty-one of 89 OXA-48-producing isolates also harboured bla CTX-M-15, which was not located on the bla OXA-48-carrying plasmid. Sequencing of four plasmids harbouring bla CTX-M15 revealed extensive plasmid heterogeneity.Conclusions. A ca 62 kb plasmid was responsible for the OXA-48 outbreak in a Dutch hospital. Our findings provide strong evidence for both within-host inter-species and between host dissemination of plasmid-based OXA-48 during a nosocomial outbreak. These findings exemplify the complex epidemiology of carbapenemase producing Enterobacteriaceae (CPE).

16.
Sci Rep ; 9(1): 10979, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358818

RESUMEN

Bariatric surgery in morbid obesity, either through sleeve gastrectomy (SG) or Roux-Y gastric bypass (RYGB), leads to sustainable weight loss, improvement of metabolic disorders and changes in intestinal microbiota. Yet, the relationship between changes in gut microbiota, weight loss and surgical procedure remains incompletely understood. We determined temporal changes in microbiota composition in 45 obese patients undergoing crash diet followed by SG (n = 22) or RYGB (n = 23). Intestinal microbiota composition was determined before intervention (baseline, S1), 2 weeks after crash diet (S2), and 1 week (S3), 3 months (S4) and 6 months (S5) after surgery. Relative to S1, the microbial diversity index declined at S2 and S3 (p < 0.05), and gradually returned to baseline levels at S5. Rikenellaceae relative abundance increased and Ruminococcaceae and Streptococcaceae abundance decreased at S2 (p < 0.05). At S3, Bifidobacteriaceae abundance decreased, whereas those of Streptococcaceae and Enterobacteriaceae increased (p < 0.05). Increased weight loss between S3-S5 was not associated with major changes in microbiota composition. No significant differences appeared between both surgical procedures. In conclusion, undergoing a crash diet and bariatric surgery were associated with an immediate but temporary decline in microbial diversity, with immediate and permanent changes in microbiota composition, independent of surgery type.


Asunto(s)
Gastrectomía , Derivación Gástrica , Microbioma Gastrointestinal , Obesidad/dietoterapia , Obesidad/cirugía , Adulto , Cirugía Bariátrica , Femenino , Gastrectomía/métodos , Derivación Gástrica/métodos , Humanos , Masculino , Persona de Mediana Edad , Obesidad/microbiología , Pérdida de Peso
17.
Microbiol Resour Announc ; 8(23)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171614

RESUMEN

Haemophilus haemolyticus is considered a commensal of the respiratory tract that can cause opportunistic infections. It is closely related to Haemophilus influenzae Here, we report the genome sequence of H. haemolyticus 16/010 O, which was isolated from sputum from a cystic fibrosis patient.

18.
Microb Genom ; 5(7)2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31166888

RESUMEN

Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen.


Asunto(s)
Infección Hospitalaria/microbiología , Elementos Transponibles de ADN/genética , Enterococcus faecium/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Infecciones por Bacterias Grampositivas/microbiología , ADN Bacteriano/genética , Farmacorresistencia Microbiana/genética , Enterococcus faecium/aislamiento & purificación , Evolución Molecular , Humanos , Recombinación Genética/genética
19.
Pediatr Infect Dis J ; 38(4): 398-399, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30882731

RESUMEN

A 13-year old neutropenic boy succumbed to bacteremia and sepsis with a Pseudomonas aeruginosa strain that rapidly developed resistance to carbapenems during meropenem monotherapy. Whole genome sequencing of the susceptible and resistant blood culture isolates revealed the meropenem-resistant phenotype to be caused by truncation of the OprD gene, which added to a preexisting inactivated mexR gene.


Asunto(s)
Antibacterianos/administración & dosificación , Meropenem/administración & dosificación , Mutación , Porinas/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Resistencia betalactámica , Adolescente , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Cultivo de Sangre , Resultado Fatal , Humanos , Masculino , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Eliminación de Secuencia , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...