Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 352: 114492, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479678

RESUMEN

Individual-level assessments of wild animal health, vital rates, and foraging ecology are critical for understanding population-wide impacts of exposure to stressors. Large whales face multiple stressors, including, but not limited to, ocean noise, pollution, and ship strikes. Because baleen is a continuously growing keratinized structure, serial extraction, and quantification of hormones and stable isotopes along the length of baleen provide a historical record of whale physiology and foraging ecology. Furthermore, baleen analysis enables the investigation of dead specimens, even decades later, allowing comparisons between historic and modern populations. Here, we examined baleen of five sub-adult gray whales and observed distinct patterns of oscillations in δ15N values along the length of their baleen plates which enabled estimation of baleen growth rates and differentiation of isotopic niche widths of the whales during wintering and summer foraging. In contrast, no regular patterns were apparent in δ13C values. Prolonged elevation of cortisol in four individuals before death indicates that chronic stress may have impacted their health and survival. Triiodothyronine (T3) increased over months in the whales with unknown causes of death, simultaneous with elevations in cortisol, but both hormones remained stable in the one case of acute death attributed to killer whale predation. This parallel elevation of cortisol and T3 challenges the classic understanding of their interaction and might relate to increased energetic demands during exposure to stressors. Reproductive hormone profiles in subadults did not show cyclical trends, suggesting they had not yet reached sexual maturity. This study highlights the potential of baleen analysis to retrospectively assess gray whales' physiological status, exposure to stressors, reproductive status, and foraging ecology in the months or years leading up to their death, which can be a useful tool for conservation diagnostics to mitigate unusual mortality events.


Asunto(s)
Endocrinología , Ballenas , Animales , Hidrocortisona , Estudios Longitudinales , Estudios Retrospectivos
2.
PLoS One ; 18(12): e0295564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38060595

RESUMEN

Stable isotope analysis is a powerful tool for dietary modeling and trophic ecology research. A crucial piece of information for isotopic dietary modeling is the accurate estimation of trophic discrimination factors (TDFs), or the isotopic offset between a consumer's tissue and its diet. In order to parameterize stable isotope dietary models for future climate scenarios, we investigated the effect of water temperature and dietary protein and lipid content on TDFs in juvenile Pacific cod (Gadus macrocephalus). Pacific cod are a commercially and ecologically important species, with stock numbers in the northeast Pacific recently having dropped by more than 70%. We tested four water temperatures (6, 8, 10, and 12°C) and two dietary regimens (low and high lipid content), representing a range of potential ocean temperature and prey quality scenarios, in order to determine carbon and nitrogen TDFs in juvenile Pacific cod. Additionally, we assessed dietary intake and proximate composition of the experimental fish in order to estimate consumption, assimilation, and retention of dietary nutrients. The results of this study suggest that dietary protein catabolism is a primary driver of nitrogen TDF variability in juvenile Pacific cod. Across all temperature treatments from 6 to 12°C, fish reared on the lower quality, lower lipid content diet had higher nitrogen TDFs. The mean TDFs for fish raised on the higher lipid, lower protein diet were +3.40 ‰ for nitrogen (Δ15N) and +0.36 ‰ for lipid-corrected carbon (Δ LC 13C). The mean TDFs for fish raised on the lower lipid, higher protein diet were +4.09 ‰ for nitrogen (Δ15N) and 0.00 ‰ for lipid-corrected carbon (Δ LC 13C). Lipid-corrected carbon isotope data showed that, regardless of temperature, fish consuming the lower lipid diet had essentially no trophic discrimination between diet and bulk tissues. We found no ecologically meaningful differences in TDFs due to water temperature across the 6°experimental range. The results of this experiment demonstrate that dietary quality, and more specifically the use of dietary protein for energetic needs, is a primary driver of trophic discrimination factors. The TDFs determined in this study can be applied to understanding trophic ecology in Pacific cod and closely related species under rapidly changing prey availability and ocean temperature conditions.


Asunto(s)
Carbono , Nitrógeno , Animales , Carbono/metabolismo , Isótopos de Nitrógeno/análisis , Nitrógeno/metabolismo , Temperatura , Cambio Climático , Isótopos de Carbono/análisis , Dieta , Proteínas en la Dieta , Agua , Lípidos
3.
Sci Rep ; 12(1): 15415, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138067

RESUMEN

The internal mechanisms responsible for modulating physiological condition, particularly those performed by the gut microbiome (GMB), remain under-explored in wildlife. However, as latitudinal and seasonal shifts in resource availability occur, the myriad micro-ecosystem services facilitated by the GMB may be especially important to wildlife health and resilience. Here, we use brown bears (Ursus arctos) as an ecological model to quantify the relationship between wildlife body condition metrics that are commonly used to assess individual and population-level health and GMB community composition and structure. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha diversity indices, subsequently using Spearman's correlation analysis to examine relationships between alpha diversity and brown bear health metrics. We found no differences in GMB composition among bears with differing body conditions, nor any correlations between alpha diversity and body condition. Our results indicate that GMB composition reflects diverse foraging strategies while allowing brown bears to achieve similar body condition outcomes.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Animales , Ecosistema , Indicadores de Calidad de la Atención de Salud , ARN Ribosómico 16S/genética , Ursidae/fisiología
4.
PLoS One ; 17(4): e0266698, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35395042

RESUMEN

Gut microbiomes (GMBs), complex communities of microorganisms inhabiting the gastrointestinal tracts of their hosts, perform countless micro-ecosystem services such as facilitating energy uptake and modulating immune responses. While scientists increasingly recognize the role GMBs play in host health, the role of GMBs in wildlife ecology and conservation has yet to be realized fully. Here, we use brown bears (Ursus arctos) as an ecological model to (1) characterize GMB community composition associated with location, season, and reproductive condition of a large omnivore; (2) investigate how both extrinsic and intrinsic factors influence GMB community membership and structure; and (3) quantify differences in GMB communities among different locations, seasons, sex, and reproductive conditions. To achieve these aims, we subsampled brown bear fecal samples collected during United States National Park Service research activities at three National Parks and Preserves (Katmai, Lake Clark, and Gates of the Arctic) and extracted microbial DNA for 16S rRNA amplicon sequencing and microbial taxonomic classification. We analyzed GMB communities using alpha and beta diversity indices, subsequently using linear mixed models to examine relationships between alpha diversity and extrinsic and intrinsic factors. Katmai brown bears hosted the greatest alpha diversity, whereas Gates brown bears hosted the least alpha diversity. Our results indicate that location and diet drive GMB variation, with bears hosting less phylogenetic diversity as park distance inland increases. Monitoring brown bear GMBs could enable managers to quickly detect and assess the impact of environmental perturbations on brown bear health. By integrating macro and micro-ecological perspectives we aim to inform local and landscape-level management decisions to promote long-term brown bear conservation and management.


Asunto(s)
Microbioma Gastrointestinal , Ursidae , Animales , Ecosistema , Filogenia , ARN Ribosómico 16S/genética , Ursidae/fisiología
5.
Heliyon ; 8(1): e08681, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028462

RESUMEN

Quantification of contaminant concentrations in baleen whales is important for individual and population level health assessments but is difficult due to large migrations and infrequent resighings. The use of baleen allows for a multiyear retrospective analysis of contaminant concentrations without having to collect repeated samples from the same individual. Here we provide case studies of mercury analysis using cold vapor atomic absorption spectroscopy in three individual humpback whales (Megaptera novaeangliae), a 44.5-year-old female and two males aged ≥35 and 66 years, over approximately three years of baleen growth. Mercury concentrations in the female's baleen were consistently 2-3 times higher than in either male. Age did not affect mercury concentrations in baleen; the younger male had comparable levels to the older male. In the female, mercury concentrations in the baleen did not change markedly during pregnancy but mercury did spike during the first half of lactation. Stable isotope profiles suggest that diet likely drove the female's high mercury concentrations. In conclusion, variations in baleen mercury content can be highly individualistic. Future studies should compare sexes as well as different populations and species to determine how the concentrations of mercury and other contaminants vary by life history parameters and geography.

6.
Conserv Physiol ; 9(1): coab059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745632

RESUMEN

Understanding calving rates of wild whale populations is critically important for management and conservation. Reproduction of humpback whales (Megaptera novaeangliae) is difficult to monitor and, even with long-term sighting studies, basic physiological information such as pregnancy rates and calving intervals remain poorly understood in many populations. We hypothesized that pregnant whales have sustained elevations in baleen progesterone that temporally correlate with gestation. To test this hypothesis, baleen progesterone profiles from two adult female North Pacific humpbacks, both with extensive sighting records and documented pregnancies, were compared to those of a nulliparous female (adult female never seen with a calf) and a juvenile male. Baleen specimens recovered during necropsy were subsampled every 2 cm from the base to the tip of the plate, with each interval representing 30-45 days of growth. Homogenized baleen powder was assayed for progesterone using enzyme immunoassays. The date of growth of each sampling location on the baleen plate was estimated based on stable isotope analysis of annual δ15N cycles. Progesterone profiles from both pregnant whales showed sustained high progesterone content (>350 ng/g) in areas corresponding to known pregnancies, inferred from calf sightings and post-mortem data. The younger female, estimated to be 13 years old, had higher progesterone during pregnancy than the 44.5 year old, but levels during non-pregnancy were similar. The nulliparous female and the male had low progesterone throughout their baleen plates. Baleen hormone analysis can determine how progesterone concentrations change throughout gestation and has potential for estimating age at first reproduction, pregnancy intervals, failed pregnancies and early calf mortality. Understanding rates of calving and current and historic reproductive patterns in humpbacks is vital to continuing conservation measures in this species.

7.
Isotopes Environ Health Stud ; 56(4): 358-369, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32631088

RESUMEN

Stable isotope data from durable, sequentially grown tissues (e.g. hair, claw, and baleen) is commonly used for modelling dietary niche breadth. The use of tissues grown over multiple months to years, however, has the potential to complicate isotopic niche breadth modelling, as time-averaged stable isotope signals from whole tissues may obscure information available from chronologically resolved stable isotope signals in serially sectioned tissues. We determined if whole samples of brown bear guard hair produced different isotopic niche breadth estimates than those produced from subsampled, serially sectioned samples of the same tissue from the same set of individuals. We sampled guard hair from brown bears (Ursus arctos) in four regions of Alaska with disparate biogeographies and dietary resource availability. Whole hair and serially sectioned hair samples were used to produce paired isotopic dietary niche breadth estimates for each region in the SIBER Bayesian model framework in R. Isotopic data from serially sectioned hair consistently produced larger estimates of isotopic dietary niche breadth than isotope data from whole hair samples. Serial sampling captures finer-scale changes in diet and when cumulatively used to estimate isotopic niche breadth, the serially sampled isotope data more fully captures dietary variability and true isotopic niche breadth.


Asunto(s)
Isótopos de Carbono/análisis , Dieta , Cabello/química , Isótopos de Nitrógeno/análisis , Ursidae/metabolismo , Alaska , Animales , Teorema de Bayes , Cadena Alimentaria , Cabello/crecimiento & desarrollo , Cabello/metabolismo , Ursidae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...