Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Pharmacol Rep ; 76(2): 368-378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498259

RESUMEN

BACKGROUND: Excessive stress, a major problem in modern societies, affects people of all ages worldwide. Corticosterone is one of the most abundant hormones secreted during stressful conditions and is associated with various dysfunctions in the body. In particular, we aimed to investigate the protective effects of hygrolansamycin C (HYGC) against corticosterone-induced cellular stress, a manifestation of excessive stress prevalent in contemporary societies. METHODS: We isolated HYGC from Streptomyces sp. KCB17JA11 and subjected PC12 cells to corticosterone-induced stress. The effects of HYGC were assessed by measuring autophagy and the expression of mitogen-activated protein kinase (MAPK) phosphorylation-related genes. We used established cellular and molecular techniques to analyze protein levels and pathways. RESULTS: HYGC effectively protected cells against corticosterone-induced injury. Specifically, it significantly reduced corticosterone-induced oxidative stress and inhibited the expression of autophagy-related proteins induced by corticosterone, which provided mechanistic insight into the protective effects of HYGC. At the signaling level, HYGC suppressed c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation and p38 activation. CONCLUSIONS: HYGC is a promising candidate to counteract corticosterone-induced apoptosis and oxidative stress. Autophagy and MAPK pathway inhibition contribute to the protective effects of HYGC. Our findings highlight the potential of HYGC as a therapeutic agent for stress-related disorders and serve as a stepping stone for further exploration and development of stress management strategies.


Asunto(s)
Corticosterona , Proteínas Quinasas p38 Activadas por Mitógenos , Ratas , Animales , Humanos , Corticosterona/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Apoptosis , Autofagia
3.
Arch Pharm Res ; 47(3): 272-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416389

RESUMEN

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.


Asunto(s)
Agaricales , Venenos , Triterpenos , Humanos , Triterpenos/farmacología , Triterpenos/química , Venenos/análisis , Estructura Molecular , Células HeLa , Agaricales/química , Cuerpos Fructíferos de los Hongos/química
4.
Talanta ; 271: 125715, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38280264

RESUMEN

Determining the activity of lysosomal ß-hexosaminidase in cells is of great importance for understanding the roles that these enzymes play in pathophysiological events. Herein, we designed the new fluorescent probe, ßGalNAc-Rhod-CM(NEt2), which consisted of a ßGalNAc-linked rhodol unit serving as a ß-hexosaminidase reactive fluorogenic moiety and a N,N'-diethylaminocoumarin (CM(NEt2)) group acting as a fluorescence marker for determining the degree of cell permeabilization. Treatment of ßGalNAc-Rhod-CM(NEt2) with ß-hexosaminidase promoted generation of Rhod-CM(NEt2), thereby leading to an increase in the intensity of fluorescence of Rhod. However, this probe did not respond to the functionally related glycosidase, O-GlcNAcase. The detection limit of ßGalNAc-Rhod-CM(NEt2) for ß-hexosaminidase was determined to be 0.52 nM, indicating that it has high sensitivity for this enzyme. Furthermore, the probe functioned as an excellent fluorogenic substrate for ß-hexosaminidase with kcat and Km values of 17 sec-1 and 22 µM, respectively. The results of cell studies using ßGalNAc-Rhod-CM(NEt2) showed that levels of ß-hexosaminidase activity in cells can be determined by measuring the intensity of fluorescence arising from Rhod and that the intensity of fluorescence of CM(NEt2) can be employed to determine the degree of cell permeabilization of the probe. Utilizing the new probe, we assessed ß-hexosaminidase activities in several types of cells and evaluated the effect of glucose concentrations in culture media on the activity of this enzyme.


Asunto(s)
Colorantes Fluorescentes , beta-N-Acetilhexosaminidasas , Colorantes Fluorescentes/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Lisosomas/metabolismo , Acetilglucosaminidasa/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894759

RESUMEN

Monitoring the microenvironment within specific cellular regions is crucial for a comprehensive understanding of life events. Fluorescent probes working in different ranges of pH regions have been developed for the local imaging of different pH environments. Especially, rhodamine-based fluorescent pH probes have been of great interest due to their ON/OFF fluorescence depending on the spirolactam ring's opening/closure. By introducing the N-alkyl-hydroxamic acid instead of the alkyl amines in the spirolactam of rhodamine, we were able to tune the pH range where the ring opening and closing of the spirolactam occurs. This six-membered cyclic hydroxamate spirolactam ring of rhodamine B proved to be highly fluorescent in acidic pH environments. In addition, we could monitor pH changes of lysosomes in live cells and zebrafish.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Concentración de Iones de Hidrógeno , Rodaminas , Lisosomas
6.
J Microbiol Biotechnol ; 33(11): 1437-1447, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37670557

RESUMEN

A recently bioinformatic analysis of genomic sequences of fungi indicated that fungi are able to produce more secondary metabolites than expected. Despite their potency, many biosynthetic pathways are silent in the absence of specific culture conditions or chemical cues. To access cryptic metabolism, 108 fungal strains isolated from various sites were cultured with or without Streptomyces sp. 13F051 which mainly produces trichostatin analogues, followed by comparison of metabolic profiles using LC-MS. Among the 108 fungal strains, 14 produced secondary metabolites that were not recognized or were scarcely produced in mono-cultivation. Of these two fungal strains, Myrmecridium schulzeri 15F098 and Scleroconidioma sphagnicola 15S058 produced four new compounds (1-4) along with a known compound (5), demonstrating that all four compounds were produced by physical interaction with Streptomyces sp. 13F051. Bioactivity evaluation indicated that compounds 3-5 impede migration of MDA-MB-231 breast cancer cells.


Asunto(s)
Actinobacteria , Inhibidores de Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Técnicas de Cocultivo , Actinobacteria/genética , Actinobacteria/metabolismo , Hongos/metabolismo , Metaboloma , Metabolismo Secundario/genética
7.
Brain Behav ; 10(12): e01891, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33064361

RESUMEN

INTRODUCTION: Densin-180 interacts with postsynaptic molecules including calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) but its function in learning and memory process has been unclear. METHODS: To investigate a role of hippocampal densin-180 in contextual fear conditioning (CFC) learning and memory processes, knockdown (KD) of densin-180 in hippocampal subareas was applied. RESULTS: First, ventral hippocampal (vHC) densin-180 KD impaired single-trial CFC (stCFC) memory one day later. stCFC caused freezing behaviors to reach the peak about one hour later in both control and KD mice, but then freezing was disappeared at 2 hr postshock in KD mice. Second, stCFC caused an immediate and transient reduction of vHC densin-180 in control mice, which was not observed in KD mice. Third, stCFC caused phosphorylated-T286 (p-T286) CaMKIIα to change similarly to densin-180, but p-T305 CaMKIIα was increased 1 hr later in control mice. In KD mice, these effects were gone. Moreover, both basal levels of p-T286 and p-T305 CaMKIIα were reduced without change in total CaMKIIα in KD mice. Fourth, we found double-trial CFC (dtCFC) memory acquisition and retrieval kinetics were different from those of stCFC in vHC KD mice. In addition, densin-180 in dorsal hippocampal area appeared to play its unique role during the very early retrieval period of both CFC memories. CONCLUSION: This study shows that vHC densin-180 is necessary for stCFC memory formation and retrieval and suggests that both densin-180 and p-T305 CaMKIIα at 1 ~ 2 hr postshock are important for stCFC memory formation. We conclude that roles of hippocampal neuronal densin-180 in CFC are temporally dynamic and differential depending on the pattern of conditioning stimuli and its location along the dorsoventral axis of hippocampal formation.


Asunto(s)
Miedo , Hipocampo , Animales , Condicionamiento Clásico , Memoria , Ratones , Ratones Endogámicos C57BL , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...