Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2021): 20240122, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628120

RESUMEN

Diverse organisms actively manipulate their (sym)biotic and physical environment in ways that feed back on their own development. However, the degree to which these processes affect microevolution remains poorly understood. The gazelle dung beetle both physically modifies its ontogenetic environment and structures its biotic interactions through vertical symbiont transmission. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess how environment modifying behaviour and microbiome transmission shape heritable variation and evolutionary potential. We found that depriving larvae of symbionts and environment modifying behaviours increased additive genetic variance and heritability for development time but not body size. This suggests that larvae's ability to manipulate their environment has the potential to modify heritable variation and to facilitate the accumulation of cryptic genetic variation. This cryptic variation may become released and selectable when organisms encounter environments that are less amenable to organismal manipulation or restructuring. Our findings also suggest that intact microbiomes, which are commonly thought to increase genetic variation of their hosts, may instead reduce and conceal heritable variation. More broadly, our findings highlight that the ability of organisms to actively manipulate their environment may affect the potential of populations to evolve when encountering novel, stressful conditions.


Asunto(s)
Escarabajos , Microbiota , Animales , Escarabajos/genética , Microbiota/genética , Larva/genética , Evolución Biológica , Variación Genética
2.
J Exp Biol ; 227(Suppl_1)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38449332

RESUMEN

Developmental plasticity is an important product of evolutionary processes, allowing organisms to maintain high fitness in the face of environmental perturbations. Once evolved, plasticity also has the potential to influence subsequent evolutionary outcomes, for example, by shaping phenotypic variation visible to selection and facilitating the emergence of novel trait variants. Furthermore, organisms may not just respond to environmental conditions through plasticity but may also actively modify the abiotic and (sym)biotic environments to which they themselves respond, causing plasticity to interact in complex ways with niche construction. Here, we explore developmental mechanisms and evolutionary consequences of plasticity in horned dung beetles. First, we discuss how post-invasion evolution of plasticity in an introduced Onthophagus species facilitated rapid range expansion and concurrent local adaptation of life history and morphology to novel climatic conditions. Second, we discuss how, in addition to plastically responding to variation in nutritional conditions, dung beetles engage in behaviors that modify the environment that they themselves respond to during later development. We document that these environment-modifying behaviors mask heritable variation for life history traits within populations, thereby shielding genetic variants from selection. Such cryptic genetic variation may be released and become selectable when these behaviors are compromised. Together, this work documents the complex interactions between plasticity, symbionts and niche construction, and highlights the usefulness of an integrative Eco-Evo-Devo framework to study the varied mechanisms and consequences of plasticity in development and evolution.


Asunto(s)
Escarabajos , Rasgos de la Historia de Vida , Animales , Escarabajos/genética , Especies Introducidas , Fenotipo
3.
Ecol Evol ; 14(3): e11089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469044

RESUMEN

Many symbionts are sexually transmitted and impact their host's development, ecology, and evolution. While the significance of symbionts that cause sexually transmitted diseases (STDs) is relatively well understood, the prevalence and potential significance of the sexual transmission of mutualists remain elusive. Here, we study the effects of sexually transmitted mutualist nematodes on their dung beetle hosts. Symbiotic Diplogastrellus monhysteroides nematodes are present on the genitalia of male and female Onthophagus beetles and are horizontally transmitted during mating and vertically passed on to offspring during oviposition. A previous study indicates that the presence of nematodes benefits larval development and life history in a single host species, Onthophagus taurus. However, Diplogastrellus nematodes can be found in association with a variety of beetle species. Here, we replicate these previous experiments, assess whether the beneficial effects extend to other host species, and test whether nematode-mediated effects differ between male and female host beetles. Rearing three relatively distantly related dung beetle species with and without nematodes, we find that the presence of nematodes benefits body size, but not development time or survival across all three species. Likewise, we found no difference in the benefit of nematodes to male compared to female beetles. These findings highlight the role of sexually transmitted mutualists in the evolution and ecology of dung beetles.

4.
Evol Dev ; 26(1): e12464, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041612

RESUMEN

Static allometry is a major component of morphological variation. Much of the literature on the development of allometry investigates how functional perturbations of diverse pathways affect the relationship between trait size and body size. Often, this is done with the explicit objective to identify developmental mechanisms that enable the sensing of organ size and the regulation of relative growth. However, changes in relative trait size can also be brought about by a range of other distinctly different developmental processes, such as changes in patterning or tissue folding, yet standard univariate biometric approaches are usually unable to distinguish among alternative explanations. Here, we utilize geometric morphometrics to investigate the degree to which functional genetic manipulations known to affect the size of dung beetle horns also recapitulate the effect of horn shape allometry. We reasoned that the knockdown phenotypes of pathways governing relative growth should closely resemble shape variation induced by natural allometric variation. In contrast, we predicted that if genes primarily affect alternative developmental processes, knockdown effects should align poorly with shape allometry. We find that the knockdown effects of several genes (e.g., doublesex, Foxo) indeed closely aligned with shape allometry, indicating that their corresponding pathways may indeed function primarily in the regulation of relative trait growth. In contrast, other knockdown effects (e.g., Distal-less, dachs) failed to align with allometry, implicating these pathways in potentially scaling-independent processes. Our findings moderate the interpretation of studies focusing on trait length and highlight the usefulness of multivariate approaches to study allometry and phenotypic plasticity.


Asunto(s)
Escarabajos , Animales , Fenotipo , Tamaño Corporal , Tamaño de los Órganos , Evolución Biológica
5.
Ecol Evol ; 13(11): e10666, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915805

RESUMEN

Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment-sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male-limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex-specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition-dependent plasticity in size and non-isometric trait scaling rather than body-size-independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology.

6.
J Evol Biol ; 36(11): 1641-1648, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885148

RESUMEN

Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.


Asunto(s)
Escarabajos , Animales , Masculino , Escarabajos/fisiología , Insulina/genética , Insulina/metabolismo , Fenotipo , Caracteres Sexuales
7.
Evol Ecol ; 37(3): 493-508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152714

RESUMEN

Directional sexual selection drives the evolution of traits that are most closely linked to reproductive success, giving rise to trait exaggeration and sexual dimorphism. Exaggerated structures are often costly and, therefore, thought to be expressed in a condition-dependent manner. Sexual selection theory thus predicts a direct link between directional sexual selection, sexual dimorphism, and sex-specific condition dependence. However, only a handful of studies investigate the relationship between sexual dimorphism and condition dependence. Using 21 genetic lines of Drosophila prolongata, we here compared the degree of sexual dimorphism and sex-specific condition dependence, measured as allometric slopes, in sexually selected and non-sexual traits. Our data revealed male-biased sexual dimorphism in all traits examined, most prominently in the sexually selected forelegs. However, there was no relationship between the degree of sex-specific condition dependence and sexual dimorphism across traits and genetic lines. Our results contradict theoretical predictions and highlight the importance of understanding the role of exaggerated traits in the context of both sexual and natural selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s10682-022-10226-0.

8.
Proc Biol Sci ; 290(1998): 20222531, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37132233

RESUMEN

Male sexual ornaments often evolve rapidly and are thought to be costly, thus contributing to sexual size dimorphism. However, little is known about their developmental costs, and even less about costs associated with structural complexity. Here, we quantified the size and complexity of three morphologically elaborate sexually dimorphic male ornaments that starkly differ across sepsid fly species (Diptera: Sepsidae): (i) male forelegs range from being unmodified, like in most females, to being adorned with spines and large cuticular protrusions; (ii) the fourth abdominal sternites are either unmodified or are converted into complex de novo appendages; and (iii) male genital claspers range from small and simple to large and complex (e.g. bifurcated). We tracked the development of 18 sepsid species from egg to adult to determine larval feeding and pupal metamorphosis times of both sexes. We then statistically explored whether pupal and adult body size, ornament size and/or ornament complexity are correlated with sex-specific development times. Larval growth and foraging periods of male and female larvae did not differ, but the time spent in the pupal stage was ca 5% longer for sepsid males despite emerging 9% smaller than females on average. Surprisingly, we found no evidence that sexual trait complexity prolongs pupal development beyond some effects of trait size. Evolving more complex traits thus does not incur developmental costs at least in this system.


Asunto(s)
Dípteros , Animales , Masculino , Femenino , Dípteros/anatomía & histología , Caracteres Sexuales , Evolución Biológica , Larva , Tamaño Corporal , Pupa
9.
Proc Natl Acad Sci U S A ; 120(19): e2211210120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126721

RESUMEN

The degree to which developmental biases affect trait evolution is subject to much debate. Here, we first quantify fluctuating asymmetry as a measure of developmental variability, i.e., the propensity of developmental systems to create some phenotypic variants more often than others, and show that it predicts phenotypic and standing genetic variation as well as deep macroevolutionary divergence in wing shape in sepsid flies. Comparing our data to the findings of a previous study demonstrates that developmental variability in the sepsid fly Sepsis punctum strongly aligns with mutational, standing genetic, and macroevolutionary variation in the Drosophilidae--a group that diverged from the sepsid lineage ca. 64 My ago. We also find that developmental bias in S. punctum wing shape aligns with the effects of allometry, but less so with putatively adaptive thermal plasticity and population differentiation along latitude. Our findings demonstrate that developmental bias in fly wings predicts evolvability and macroevolutionary trajectories on a much greater scale than previously appreciated but also suggest that causal explanations for such alignments may go beyond simple constraint hypotheses.


Asunto(s)
Evolución Biológica , Drosophilidae , Animales , Mutación , Fenotipo , Alas de Animales
10.
Evolution ; 77(3): 682-689, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36626800

RESUMEN

Plastic responses to environmental conditions may themselves depend on other environmental conditions, but how such environment-by-environment (E×E) interactions may impact evolution remains unclear. We investigate how temperature shapes the nutritional polyphenism in horn length in a beetle and test whether "allometric plasticity" (a form of E×E) predicts latitudinal differentiation during a rapid range expansion. Rearing populations under common garden conditions demonstrates that increased temperatures reduce the body size threshold separating two male morphs in all populations but also that the magnitude of temperature-dependent changes in allometry diverged across recently established populations. Furthermore, we found a latitudinal increase in the threshold in the species' exotic range at one of the temperatures, suggesting that allometric plasticity in response to temperature may predict evolved clinal differences. Our findings demonstrate that E×E interactions can be similar in magnitude to G×E interactions and that allometric plasticity and its evolution may impact population's responses to environmental changes.


Asunto(s)
Escarabajos , Animales , Masculino , Fenotipo , Tamaño Corporal , Evolución Biológica
11.
Proc Biol Sci ; 289(1983): 20221441, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168764

RESUMEN

The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry-a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape-whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences-converge along 'developmental lines of least resistance', i.e. are biased by the developmental system underpinning horn shape.


Asunto(s)
Escarabajos , Animales , Sesgo , Evolución Biológica , Escarabajos/genética , Fenotipo
12.
Evol Dev ; 24(1-2): 3-15, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35072984

RESUMEN

Understanding how environmental variation influences even cryptic traits is important to clarify the roles of selection and developmental constraints in past evolutionary divergence and to predict future adaptation under environmental change. Female yellow dung flies (Scathophaga stercoraria) typically have three sperm storage compartments (3S), but occasionally four (4S). More spermathecae are thought to be a female adaptation facilitating sperm sorting after mating, but the phenotype is very rare in nature. We manipulated the flies' developmental environment by food restriction, pesticides, and hot temperatures to investigate the nature and extent of developmental plasticity of this trait, and whether spermatheca expression correlates with measures of performance and developmental stability, as would be expected if 4S expression is a developmental aberration. The spermathecal polymorphism of yellow dung fly females is heritable, but also highly developmentally plastic, varying strongly with rearing conditions. 4S expression is tightly linked to growth rate, and weakly positively correlated with fluctuating asymmetry of wings and legs, suggesting that the production of a fourth spermatheca could be a nonadaptive developmental aberration. However, spermathecal plasticity is opposite in the closely related and ecologically similar Scathophaga suilla, demonstrating that overexpression of spermathecae under developmental stress is not universal. At the same time, we found overall mortality costs as well as benefits of 4S pheno- and genotypes (also affecting male siblings), suggesting that a life history trade-off may potentially moderate 4S expression. We conclude that the release of cryptic genetic variation in spermatheca number in the face of strong environmental variation may expose hidden traits (here reproductive morphology) to natural selection (here under climate warming or food augmentation). Once exposed, hidden traits can potentially undergo rapid genetic assimilation, even in cases when trait changes are first triggered by random errors that destabilize developmental processes.


Asunto(s)
Dípteros , Animales , Evolución Biológica , Femenino , Masculino , Reproducción/genética , Selección Genética , Alas de Animales
13.
Am Nat ; 199(1): 168-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34978972

RESUMEN

AbstractThe black scavenger fly Sepsis thoracica exhibits polyphenic development resulting in alternate small black and large amber male morphs. Although the behavior, ecology, and physiology of both morphs are being scrutinized, the evolutionary origins of the nutritional polyphenism remain poorly understood. I here use a comparative approach to study variation in the degree of melanization of the forefemur-a secondary sexual trait. Melanization showed nutritional plasticity in all species, and character mapping suggests polyphenic development to represent the ancestral character state that was lost repeatedly. That is, interspecific variation among the studied species is mainly caused by the loss and not the gain of polyphenic development. Coevolution between male melanization and mating system differences further implicates sexual selection in the evolution of male melanization. These findings highlight the usefulness of comparative and natural history data in shedding new light on the evolution of phenotypic variation.


Asunto(s)
Simuliidae , Animales , Evolución Biológica , Masculino , Fenotipo , Reproducción , Caracteres Sexuales , Selección Sexual
14.
Ecol Evol ; 11(21): 15098-15110, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765163

RESUMEN

Age and size at maturity are key life-history components, yet the proximate underpinnings that mediate intra- and interspecific variation in life history remain poorly understood. We studied the proximate underpinnings of species differences and nutritionally plastic variation in adult size and development time in four species of dung beetles. Specifically, we investigated how variation in insect growth mediates adult size variation, tested whether fast juvenile growth trades-off with developmental stability in adult morphology and quantified plastic responses of digestive systems to variation in food quality. Contrary to the common size-development time trade-off, the largest species exhibited by far the shortest development time. Correspondingly, species diverged strongly in the shape of growth trajectories. Nutritionally plastic adjustments to growth were qualitatively similar between species but differed in magnitude. Although we expected rapid growth to induce developmental costs, neither instantaneous growth rates nor the duration of larval growth were related to developmental stability in the adult. This renders the putative costs of rapid growth enigmatic. We further found that larvae that encounter a challenging diet develop a larger midgut and digest more slowly than animals reared on a more nutritious diet. These data are consistent with the hypothesis that larvae invest into a more effective digestive system when exposed to low-quality nutrition, but suggest that species may diverge readily in their reliance on these mechanisms. More generally, our data highlight the complex, and often hidden, relationships between immature growth and age and size at maturation even in ecologically similar species.

15.
J Therm Biol ; 100: 103069, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34503806

RESUMEN

Ambient temperature strongly determines the behaviour, physiology, and life history of all organisms. The technical assessment of organismal thermal niches in form of now so-called thermal performance curves (TPC) thus has a long tradition in biological research. Nevertheless, several traits do not display the idealized, intuitive dome-shaped TPC, and in practice assessments often do not cover the entire realistic or natural temperature range of an organism. We here illustrate this by presenting comprehensive sex-specific TPCs for the major (juvenile) life history traits of yellow dung flies (Scathophaga stercoraria; Diptera: Scathophagidae). This concerns estimation of prominent biogeographic rules, such as the temperature-size-rule (TSR), the common phenomenon in ectothermic organisms that body size decreases as temperature increases. S. stercoraria shows an untypical asymptotic TPC of continuous body size increase with decreasing temperature without a peak (optimum), thus following the TSR throughout their entire thermal range (unlike several other insects presented here). Egg-to-adult mortality (our best fitness estimator) also shows no intermediate maximum. Both may relate to this fly entering pupal winter diapause below 12 °C. While development time presents a negative exponential relationship with temperature, development rate and growth rate typify the classic TPC form for this fly. The hitherto largely unexplored close relative S. suilla with an even more arctic distribution showed very similar responses, demonstrating large overlap among two ecologically similar, coexisting dung fly species, thus implying limited utility of even complete TPCs for predicting species distribution and coexistence.


Asunto(s)
Tamaño Corporal , Temperatura Corporal , Dípteros/fisiología , Rasgos de la Historia de Vida , Aclimatación , Animales , Dípteros/crecimiento & desarrollo , Estaciones del Año
16.
Proc Biol Sci ; 288(1953): 20210241, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157867

RESUMEN

Context-dependent trait exaggeration is a major contributor to phenotypic diversity. However, the genetic modifiers instructing development across multiple contexts remain largely unknown. We use the arthropod tibia, a hotspot for segmental differentiation, as a paradigm to assess the developmental mechanisms underlying the context-dependent structural exaggeration of size and shape through nutritional plasticity, sexual dimorphism and segmental differentiation. Using an RNAseq approach in the sexually dimorphic and male-polyphenic dung beetle Digitonthophagus gazella, we find that only a small portion (3.7%) of all transcripts covary positively in expression level with trait size across contexts. However, RNAi-mediated knockdown of the conserved sex-determination gene doublesex suggests that it functions as a context-dependent master mediator of trait exaggeration in D. gazella as well as the closely related dung beetle Onthophagus taurus. Taken together, our findings suggest (i) that the gene networks associated with trait exaggeration are highly dependent on the precise developmental context, (ii) that doublesex differentially shapes morphological exaggeration depending on developmental contexts and (iii) that this context-specificity of dsx-mediated trait exaggeration may diversify rapidly. This mechanism may contribute to the resolution of conflict arising from environment-dependent antagonistic selection among sexes and divergent developmental contexts in a wide range of animals.


Asunto(s)
Escarabajos , Animales , Escarabajos/genética , Masculino , Fenotipo , Interferencia de ARN , Caracteres Sexuales , Procesos de Determinación del Sexo
17.
J Evol Biol ; 34(8): 1326-1332, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34075658

RESUMEN

An organism's fitness depends strongly on its age and size at maturation. Although the evolutionary forces acting on these critical life history traits have been heavily scrutinized, the developmental mechanisms underpinning intraspecific variation in adult size and development time remain much less well-understood. Using RNA interference, I here show that the highly conserved sex-determination gene doublesex (dsx) mediates sexual size dimorphism (SSD) in the gazelle dung beetle Digitonthophagus gazella. Because doublesex undergoes sex-specific splicing and sex-limited isoforms regulate different target genes, this suggests that dsx contributes to the resolution of intralocus sexual conflict in body size. However, these results contrast with previous studies demonstrating that dsx does not affect body size or SSD in Drosophila. This indicates that intraspecific body size variation is underlain by contrasting developmental mechanisms in different insect lineages. Furthermore, although male D. gazella have a longer development time than females, sexual bimaturism was not affected by dsx expression knockdown. In addition, and in contrast to secondary sexual morphology, dsx did not significantly affect nutritional plasticity in life history. Taken together, these findings indicate that dsx signalling contributes to intraspecific life history variation but that dsx's function in mediating sexual dimorphism in life history differs among traits and species. More generally, these findings suggest that genes ancestrally tasked with sex determination have been co-opted into the developmental regulation of life history traits and may represent an underappreciated mechanism of life history evolution.


Asunto(s)
Antílopes , Escarabajos , Animales , Escarabajos/genética , Femenino , Genes de Insecto , Masculino , Caracteres Sexuales , Procesos de Determinación del Sexo/genética
18.
Ecol Evol ; 10(19): 10558-10570, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072280

RESUMEN

Developmental and evolutionary processes underlying phenotypic variation frequently target several traits simultaneously, thereby causing covariation, or integration, among phenotypes. While phenotypic integration can be neutral, correlational selection can drive adaptive covariation. Especially, the evolution and development of exaggerated secondary sexual traits may require the adjustment of other traits that support, compensate for, or otherwise function in a concerted manner. Although phenotypic integration is ubiquitous, the interplay between genetic, developmental, and ecological conditions in shaping integration and its evolution remains poorly understood. Here, we study the evolution and plasticity of trait integration in the bull-headed dung beetle Onthophagus taurus which is characterized by the polyphenic expression of horned ('major') and hornless ('minor') male morphs. By comparing populations subject to divergent intensities of mate competition, we tested whether mating system shifts affect integration of traits predicted to function in a morph-specific manner. We focussed on fore and hind tibia morphology as these appendages are used to stabilize major males during fights, and on wings, as they are thought to contribute to morph-based differences in dispersal behavior. We found phenotypic integration between fore and hind tibia length and horn length that was stronger in major males, suggesting phenotypic plasticity in integration and potentially secondary sexual trait compensation. Similarly, we observed that fore tibia shape was also integrated with relative horn length. However, although we found population differentiation in wing and tibia shape and allometry, populations did not differ in integration. Lastly, we detected little evidence for morph differences in integration in either tibia or wing shape, although wing allometries differed between morphs. This contrasts with previous studies documenting intraspecific differentiation in morphology, behavior, and allometry as a response to varying levels of mate competition across O. taurus populations. We discuss how sexual selection may shape morph-specific integration, compensation, and allometry across populations.

19.
Evolution ; 74(9): 2059-2072, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32558925

RESUMEN

Understanding the interplay between genetic differentiation, ancestral plasticity, and the evolution of plasticity during adaptation to environmental variation is critical to predict populations' responses to environmental change. However, the role of plasticity in rapid adaptation in nature remains poorly understood. We here use the invasion of the horned beetle Onthophagus taurus in the United States during the last half century to study the contribution of ancestral plasticity and post-invasion evolution of plastic responses in rapid population differentiation. We document latitudinal variation in life history and morphology, including genetic compensation in development time and body size, likely adaptive responses to seasonal constraints in the North. However, clinal variation in development time and size was strongly dependent on rearing temperature, suggesting that population differentiation in plasticity played a critical role in successful adaptation on ecological timescales. Clinal variation in wing shape was independent of ancestral plasticity, but correlated with derived plasticity, consistent with evolutionary interdependence. In contrast, clinal variation in tibia shape aligned poorly with thermal plasticity. Overall, this study suggests that post-invasion evolution of plasticity contributed to range expansions and concurrent adaptation to novel climatic conditions.


Asunto(s)
Adaptación Biológica , Escarabajos/anatomía & histología , Escarabajos/fisiología , Rasgos de la Historia de Vida , Alas de Animales/anatomía & histología , Animales , Evolución Biológica , Femenino , Florida , Indiana , Especies Introducidas , Masculino , Michigan , North Carolina , Temperatura
20.
J Evol Biol ; 33(6): 831-841, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32145126

RESUMEN

The proximate and ultimate mechanisms underlying scaling relationships as well as their evolutionary consequences remain an enigmatic issue in evolutionary biology. Here, I investigate the evolution of wing allometries in the Schizophora, a group of higher Diptera that radiated about 65 million years ago, by studying static allometries in five species using multivariate approaches. Despite the vast ecological diversity observed in contemporary members of the Schizophora and independent evolutionary histories throughout most of the Cenozoic, size-related changes represent a major contributor to overall variation in wing shape, both within and among species. Static allometries differ between species and sexes, yet multivariate allometries are correlated across species, suggesting a shared developmental programme underlying size-dependent phenotypic plasticity. Static allometries within species also correlate with evolutionary divergence across 33 different families (belonging to 11 of 13 superfamilies) of the Schizophora. This again points towards a general developmental, genetic or evolutionary mechanism that canalizes or maintains the covariation between shape and size in spite of rapid ecological and morphological diversification during the Cenozoic. I discuss the putative roles of developmental constraints and natural selection in the evolution of wing allometry in the Schizophora.


Asunto(s)
Evolución Biológica , Dípteros/genética , Alas de Animales/anatomía & histología , Animales , Biometría , Dípteros/anatomía & histología , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...