Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 118: 102288, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36195431

RESUMEN

Chytrid parasites are increasingly recognized as ubiquitous and potent control agents of phytoplankton, including bloom-forming toxigenic cyanobacteria. In order to explore the fate of the cyanobacterial toxin microcystins (MCs) and assess potential upregulation of their production under parasite attack, a laboratory experiment was conducted to evaluate short- and long-term variation in extracellular and intracellular MC in the cyanobacteria Planktothrix agardhii and P. rubescens, both under chytrid infection and in the presence of lysates of previously infected cyanobacteria. MCs release under parasite infection was limited and not different to uninfected cyanobacteria, with extracellular toxin shares never exceeding 10%, substantially below those caused by mechanical lysis induced by a cold-shock. Intracellular MC contents in P. rubescens under infection were not significantly different from uninfected controls, whereas infected P. agardhii showed a 1.5-fold increase in intracellular MC concentrations, but this was detected within the first 48 hours after parasite inoculation and not later, indicating no substantial MC upregulation in cells being infected. The presence of lysates of previously infected cyanobacteria did not elicit higher intracellular MC contents in exposed cyanobacteria, speaking against a putative upregulation of toxin production induced via quorum sensing in response to parasite attack. These results indicate that chytrid epidemics can constitute a bloom decay mechanism that is not accompanied by massive release of toxins into the medium.


Asunto(s)
Quitridiomicetos , Cianobacterias , Quitridiomicetos/patogenicidad , Toxinas de Cianobacterias , Microcistinas , Fitoplancton/microbiología
2.
Protist ; 171(5): 125768, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33126022

RESUMEN

Microbial parasites have only recently been included in planktonic food web studies, but their functional role in conveying dietary energy still remains to be elucidated. Parasitic fungi (chytrids) infecting phytoplankton may constitute an alternative trophic link and promote organic matter transfer through the production of dissemination zoospores. Particularly, during proliferation of inedible or toxic algal species, such as large Cyanobacteria fostered by global warming, parasites can constitute an alternative trophic link providing essential dietary nutrients that support somatic growth and reproduction of consumers. Using phytoplankton-parasites associations grown under laboratory controlled conditions we assessed the fatty acids and biochemical composition of species with different nutritional quality and followed the metabolic pathway from the algal host and their parasites zoospores using compound-specific stable isotope analysis. This study demonstrated that chytrids are trophic upgraders able to retain essential nutrients that can be transferred to upper trophic levels both in terms of organic matter quantity and nutritional quality. Through the production of zoospores, nutritionally important long-chain polyunsaturated fatty acids that can be consequently assimilated by consumers. We conclude that parasitism at the base of aquatic food webs may represent a crucial trophic link for dietary nutrients and essential biomolecules alternative to herbivory or bacterivory, which can be particularly crucial during the proliferation of inedible or nutritionally inadequate algal species fostered by climate change.


Asunto(s)
Cadena Alimentaria , Plancton/metabolismo , Quitridiomicetos/química , Quitridiomicetos/metabolismo , Diatomeas/química , Diatomeas/metabolismo , Ácidos Grasos/análisis , Plancton/parasitología , Streptophyta/química , Streptophyta/metabolismo
3.
AIMS Microbiol ; 6(2): 92-105, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32617443

RESUMEN

Gonyostomum semen is a bloom-forming freshwater raphidophyte that is currently on the increase, which concerns water managers and ecologists alike. Much indicates that the recent success of G. semen is linked to its diel vertical migration (DVM), which helps to overcome the spatial separation of optimal light conditions for photosynthesis at the surface of a lake and the high concentration of phosphate in the hypolimnion. I here present data from a field study conducted in Lake Lundebyvannet (Norway) in 2017-2019 that are consistent with the idea that the DVM of G. semen also allows for a hypolimnetic uptake of ammonium. As expected, microbial mineralization of organic matter in a low-oxygen environment led to an accumulation of ammonium in the hypolimnion as long as G. semen was absent. In contrast, a decreasing or constantly lower concentration of hypolimnetic ammonium was found in presence of a migrating G. semen population. In summer of 2019, a short break in the DVM of G. semen coincided with a rapid accumulation of hypolimnetic ammonium, which was equally rapidly decimated when G. semen resumed its DVM. Taken together, these data support the idea that G. semen can exploit the hypolimnetic pool of ammonium, which may be one reason for the recent success of the species and its significant impact on the structure of the aquatic food web.

4.
Sci Total Environ ; 699: 134388, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736194

RESUMEN

A number of boreal surface waters have become browner over the last two decades. Recovery from acid rain is regarded as an important driver for this lake color increase, indicating a general browner lake color in preindustrial times. However, the lack of long-term monitoring data makes it challenging to unravel historical changes in lake color. In this study, we estimated long-term development in lake color (1800 to 2015) based on the optical properties of alkaline extractable dissolved organic matter (DOM) from sediment using UV-Vis and fluorescence spectroscopy. We found that the present lake color (2015) was significantly browner (four times higher in absorption coefficient) than for the period from 1800 to 1915 when lake color was at a lower and more stable level. Fluorescence excitation-emission matrices combined with parallel factor analysis (EEM-PARAFAC) indicate that terrestrially derived DOM was the main source of sediment DOM. However, the importance of in-lake source of DOM has significantly increased with time. The long-term trend in DOM burial was not consistent with the anthropogenic sulfur (S) deposition pattern. However, along with the increased sediment DOM, there has been increased precipitation, temperature and forest growth with time, which affect the production and degradation of DOM. Even though S deposition might have delayed the runoff of terrestrial DOM for a certain period, it comes in addition to other color-regulating factors. Thus, there is no single driver for the observed lake browning, but rather an interplay between different drivers varying in strength over time, such as afforestation, changes in areal use, declined S deposition, and increased temperature and precipitation.

5.
Ecology ; 101(1): e02900, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31544240

RESUMEN

Fungal diseases threaten natural and man-made ecosystems. Chytridiomycota (chytrids) infect a wide host range, including phytoplankton species that form the basis of aquatic food webs and produce roughly half of Earth's oxygen. However, blooms of large or toxic phytoplankton form trophic bottlenecks, as they are inedible to zooplankton. Chytrids infecting inedible phytoplankton provide a trophic link to zooplankton by producing edible zoospores of high nutritional quality. By grazing chytrid zoospores, zooplankton may induce a trophic cascade, as a decreased zoospore density will reduce new infections. Conversely, fewer infections will not produce enough zoospores to sustain long-term zooplankton growth and reproduction. This intricate balance between zoospore density necessary for zooplankton energetic demands (growth/survival), and the loss in new infections (and thus new zoospores) because of grazing was tested empirically. To this end, we exposed a cyanobacterial host (Planktothrix rubescens) infected by a chytrid (Rizophydium megarrhizum) to a grazer density gradient (the rotifer Keratella cf. cochlearis). Rotifers survived and reproduced on a zoospore diet, but the Keratella population growth was limited by the amount of zoospores provided by chytrid infections, resulting in a situation where zooplankton survived but were restricted in their ability to control disease in the cyanobacterial host. We subsequently developed and parameterized a dynamical food-chain model using an allometric relationship for clearance rate to assess theoretically the potential of different-sized zooplankton groups to restrict disease in phytoplankton hosts. Our model suggests that smaller-sized zooplankton may have a high potential to reduce chytrid infections on inedible phytoplankton. Together, our results point out the complexity of three-way interactions between hosts, parasites, and grazers and highlight that trophic cascades are not always sustainable and may depend on the grazer's energetic demand.


Asunto(s)
Epidemias , Zooplancton , Animales , Cianobacterias , Ecosistema , Cadena Alimentaria , Fitoplancton , Planktothrix
6.
PLoS One ; 14(12): e0226650, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31851717

RESUMEN

The ability to identify drivers responsible for algal community shifts is an important aspect of environmental issues. The lack of long-term datasets, covering periods prior to these shifts, is often limiting our understanding of drivers responsible. The freshwater alga, Gonyostomum semen (Raphidophyceae), has significantly increased distribution and mass occurrences in Scandinavian lakes during the past few decades, often releasing a skin irritating slime that causes discomfort for swimmers. While the alga has been extensively studied, long-term data from individual lakes are often absent or greatly limited and drivers behind this species' success are still not clear. However, if specific and persistent taxa biomarkers for G. semen could be detected in dated sediment cores, long-term data would be improved and more useful. To test for biomarkers, we examined the pigment composition of several G. semen strains in culture. Further, dated sediment core samples from Lake Lundebyvann, Norway, were used to test the pigments' suitability as biomarkers in paleolimnological studies. Modifications to a common analysis allowed for the successful detection of the polar xanthophyll heteroxanthin and the non-polar chlorophyll a, as well as several other algal pigments by using high performance liquid chromatography-photometric diode arrays (HPLC-PDA). Heteroxanthin was confirmed by liquid chromatography-mass spectrometry (LC-MS) and detected by HPLC-PDA in all examined G. semen strains, along with chlorophyll a. Using HPLC-PDA, we also identified and confirmed the presence of the biomarker, xanthophyll heteroxanthin, in sediment core samples up to 60 years of age. The specificity of this xanthophyll was also tested by examining a wide range of algal strains from common Norwegian phytoplankton species. Heteroxanthin was not detected in any species commonly occurring in significant amounts in Norwegian lakes. We therefore conclude that heteroxanthin is a suitable pigment biomarker for G. semen and that this pigment can be successfully used for paleolimnological studies.


Asunto(s)
Biomarcadores/análisis , Semen/química , Estramenopilos/química , Xantófilas/análisis , Lagos , Noruega , Pigmentación
7.
Toxins (Basel) ; 10(7)2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970874

RESUMEN

The human health risks posed by exposure to cyanobacterial toxins such as microcystin (MC) through water and fish consumption remain poorly described. During the last two decades, coastal regions of Lake Victoria such as Nyanza Gulf (Kisumu Bay) have shown severe signs of eutrophication with blooms formed by Microcystis producing MC. In this study, the spatial variability in MC concentration in Kisumu Bay was investigated which was mostly caused by Microcystis buoyancy and wind drifting. Small fish (<6 cm) mainly composed of Rastrineobola argentea were examined for MC content by means of biological methods such as ELISA and protein phosphatase inhibition assay (PPIA) and partly by chemical-analytical methods such as LC-MS/MS. Overall, the MC content in small fish was related to the MC content observed in the seston. When comparing the MC content in the seston in relation to dry weight with the MC content in small fish the latter was found three orders of magnitude decreased. On average, the ELISA-determined MC contents exceeded the PPIA-determined MC contents by a factor of 8.2 ± 0.5 (SE) while the MC contents as determined by LC-MS/MS were close to the detection limit. Using PPIA, the MC content varied from 25⁻109 (mean 62 ± 7) ng/g fish dry weight in Kisumu Bay vs. 14 ± 0.8 ng MC/g in the more open water of L. Victoria at Rusinga channel. Drying the fish under the sun showed little effect on MC content, although increased humidity might indirectly favor photocatalyzed MC degradation.


Asunto(s)
Peces , Microcistinas/análisis , Fitoplancton/química , Contaminantes Químicos del Agua/análisis , Animales , Monitoreo del Ambiente , Eutrofización , Kenia , Lagos
8.
Front Microbiol ; 9: 921, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867832

RESUMEN

Experimental evolution can be used to test for and characterize parasite and pathogen adaptation. We undertook a serial-passage experiment in which a single parasite population of the obligate fungal (chytrid) parasite Rhizophydium megarrhizum was maintained over a period of 200 days under different mono- and multiclonal compositions of its phytoplankton host, the bloom-forming cyanobacterium Planktothrix. Despite initially inferior performance, parasite populations under sustained exposure to novel monoclonal hosts experienced rapid fitness increases evidenced by increased transmission rates. This demonstrates rapid adaptation of chytrids to novel hosts and highlights their high evolutionary potential. In contrast, increased fitness was not detected in parasites exposed to multiclonal host mixtures, indicating that cyanobacterial intraspecific diversity hampers parasites adaptation. Significant increases in intensity of infection were observed in monoclonal and multiclonal treatments, suggesting high evolvability of traits involved in parasite attachment onto hosts (i.e., encystment). A comparison of the performance of evolved and unevolved (control) parasite populations against their common ancestral host did not reveal parasite attenuation. Our results exemplify the ability of chytrid parasites to adapt rapidly to new hosts, while providing experimental evidence that genetic diversity in host populations grants increased resistance to disease by hindering parasite adaptation.

9.
Parasitology ; 145(10): 1279-1286, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29478432

RESUMEN

Understanding how individual parasite traits contribute to overall fitness, and how they are modulated by both external and host environment, is crucial for predicting disease outcome. Fungal (chytrid) parasites of phytoplankton are important yet poorly studied pathogens with the potential to modulate the abundance and composition of phytoplankton communities and to drive their evolution. Here, we studied life-history traits of a chytrid parasite infecting the planktonic, bloom-forming cyanobacterium Planktothrix spp. under host genotype and thermal variation. When expressing parasite fitness in terms of transmission success, disease outcome was largely modulated by temperature alone. Yet, a closer examination of individual parasite traits linked to different infection phases, such as (i) the establishment of the infection (i.e. intensity of infection) and (ii) the exploitation of host resources (i.e. size of reproductive structures and propagules), revealed differential host genotype and temperature × host genotype modulation, respectively. This illustrates how parasite fitness results from the interplay of individual parasite traits that are differentially controlled by host and external environment, and stresses the importance of combining multiple traits to gain insights into underlying infection mechanisms.


Asunto(s)
Quitridiomicetos/patogenicidad , Cianobacterias/genética , Aptitud Genética , Interacciones Huésped-Parásitos/genética , Fitoplancton/parasitología , Temperatura , Cianobacterias/fisiología , Variación Genética , Genotipo , Especificidad del Huésped , Fitoplancton/genética
10.
AIMS Microbiol ; 4(2): 304-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31294217

RESUMEN

Freshwater cyanobacteria are prone to a wide range of highly potent microbial antagonists. Most of these exploit their prey in a frequency-dependent manner and are therefore particularly well suited to prevent any accumulation of cyanobacteria. Mass developments of cyanobacteria, the so-called blooms, should therefore be rare events, which is in striking contrast to what we actually see in nature. Laboratory experiments of the present study showed that the temperature range 5.8-10 °C forms a thermal refuge, inside which the cyanobacterium Planktothrix can grow without being exploited by two otherwise highly potent microbial antagonists. In nature, access of Planktothrix to this refuge was associated with positive net growth and a high probability of bloom formation, confirming that refuge temperatures indeed allow Planktothrix to grow with a minimum of biomass loss caused by microbial antagonists. Contact to higher temperatures, in contrast, was associated with decreases in net growth rate and in probability of bloom formation, with population collapses and with the occurrence of parasite infection. This is in agreement with the finding of laboratory experiments that above 10 °C exploitation of Planktothrix by multiple microbes increases in a temperature-dependent manner. Taken together, above findings suggest that temperature modulates the microbial control of natural Planktothrix populations. Low temperatures form a thermal refuge that may promote Planktothrix bloom formation by shielding the cyanobacterium from otherwise highly potent microbial antagonists.

11.
Environ Microbiol ; 19(10): 3802-3822, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28618196

RESUMEN

Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology.


Asunto(s)
Quitridiomicetos/clasificación , Quitridiomicetos/patogenicidad , Micosis/microbiología , Fitoplancton/microbiología , Animales , Evolución Biológica , Ecología , Ecosistema , Microbiología Ambiental , Cadena Alimentaria , Especificidad del Huésped , Filogenia
12.
Front Microbiol ; 8: 1015, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634476

RESUMEN

Human activities have dramatically altered nutrient fluxes from the landscape into receiving waters. As a result, not only the concentration of nutrients in surface waters has increased, but also their elemental ratios have changed. Such shifts in resource supply ratios will alter autotroph stoichiometry, which may in turn have consequences for higher trophic levels, including parasites. Here, we hypothesize that parasite elemental composition will follow changes in the stoichiometry of its host, and that its reproductive success will decrease with host nutrient limitation. We tested this hypothesis by following the response of a host-parasite system to changes in nitrogen (N) and phosphorus (P) supply in a controlled laboratory experiment. To this end, we exposed a fungal parasite (the chytrid Rhizophydium megarrhizum) to its host (the freshwater cyanobacterium Planktothrix rubescens) under control, low N:P and high N:P conditions. Host N:P followed treatment conditions, with a decreased N:P ratio under low N:P supply, and an increased N:P ratio under high N:P supply, as compared to the control. Shifts in host N:P stoichiometry were reflected in the parasite stoichiometry. Furthermore, at low N:P supply, host intracellular microcystin concentration was lowered as compared to high N:P supply. In contrast to our hypothesis, zoospore production decreased at low N:P and increased at high N:P ratio as compared to the control. These findings suggest that fungal parasites have a relatively high N, but low P requirement. Furthermore, zoospore elemental content, and thereby presumably their size, decreased at high N:P ratios. From these results we hypothesize that fungal parasites may exhibit a trade-off between zoospore size and production. Since zooplankton can graze on chytrid zoospores, changes in parasite production, stoichiometry and cell size may have implications for aquatic food web dynamics.

13.
Sci Rep ; 6: 35039, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27733762

RESUMEN

Parasites are rarely included in food web studies, although they can strongly alter trophic interactions. In aquatic ecosystems, poorly grazed cyanobacteria often dominate phytoplankton communities, leading to the decoupling of primary and secondary production. Here, we addressed the interface between predator-prey and host-parasite interactions by conducting a life-table experiment, in which four Daphnia galeata genotypes were maintained on quantitatively comparable diets consisting of healthy cyanobacteria or cyanobacteria infected by a fungal (chytrid) parasite. In four out of five fitness parameters, at least one Daphnia genotype performed better on parasitised cyanobacteria than in the absence of infection. Further treatments consisting of purified chytrid zoospores and heterotrophic bacteria suspensions established the causes of improved fitness. First, Daphnia feed on chytrid zoospores which trophically upgrade cyanobacterial carbon. Second, an increase in heterotrophic bacterial biomass, promoted by cyanobacterial decay, provides an additional food source for Daphnia. In addition, chytrid infection induces fragmentation of cyanobacterial filaments, which could render cyanobacteria more edible. Our results demonstrate that chytrid parasitism can sustain zooplankton under cyanobacterial bloom conditions, and exemplify the potential of parasites to alter interactions between trophic levels.


Asunto(s)
Daphnia/fisiología , Zooplancton/microbiología , Animales , Conducta Animal , Cianobacterias/fisiología , Daphnia/genética , Conducta Alimentaria , Cadena Alimentaria , Hongos/fisiología , Genotipo , Interacciones Huésped-Parásitos
14.
PLoS One ; 10(12): e0145559, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26714010

RESUMEN

Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a "cold thermal refuge", inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently.


Asunto(s)
Quitridiomicetos/fisiología , Ambiente , Interacciones Huésped-Parásitos , Fitoplancton/parasitología , Evolución Molecular , Genotipo , Lagos/parasitología , Luz , Fitoplancton/genética , Temperatura
15.
PLoS One ; 10(9): e0137645, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26359659

RESUMEN

The Gauss-peak spectra (GPS) method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method's performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC). The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids) proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Pigmentos Biológicos/química , Extractos Vegetales/química , Algoritmos , Microalgas/química , Espectrofotometría/métodos
16.
PLoS One ; 10(3): e0118738, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793898

RESUMEN

Parasitic chytrid fungi (phylum Chytridiomycota) are known to infect specific phytoplankton, including the filamentous cyanobacterium Planktothrix. Subspecies, or chemotypes of Planktothrix can be identified by the presence of characteristic oligopeptides. Some of these oligopeptides can be associated with important health concerns due to their potential for toxin production. However, the relationship between chytrid parasite and Planktothrix host is not clearly understood and more research is needed. To test the parasite-host relationship over time, we used a sediment core extracted from a Norwegian lake known to contain both multiple Planktothrix chemotype hosts and their parasitic chytrid. Sediment DNA of chytrids and Planktothrix was amplified and a 35-year coexistence was found. It is important to understand how these two antagonistic species can coexistence in a lake. Reconstruction of the time series showed that between 1979-1990 at least 2 strains of Planktothrix were present and parasitic pressure exerted by chytrids was low. After this period one chemotype became dominant and yet showed continued low susceptibility to chytrid parasitism. Either environmental conditions or intrinsic characteristics of Planktothrix could have been responsible for this continued dominance. One possible explanation could be found in the shift of Planktothrix to the metalimnion, an environment that typically consists of low light and decreased temperatures. Planktothrix are capable of growth under these conditions while the chytrid parasites are constrained. Another potential explanation could be due to the differences between cellular oligopeptide variations found between Planktothrix chemotypes. These oligopeptides can function as defense systems against chytrids. Our findings suggest that chytrid driven diversity was not maintained over time, but that the combination of environmental constraints and multiple oligopeptide production to combat chytrids could have allowed one Planktothrix chemotype to have dominance despite chytrid presence.


Asunto(s)
Evolución Biológica , Quitridiomicetos/genética , ADN de Hongos/genética , Sedimentos Geológicos/microbiología , Parásitos/genética , Fitoplancton/microbiología , Animales , Monitoreo del Ambiente , Interacciones Huésped-Patógeno/genética , Lagos/microbiología , Noruega , Reacción en Cadena de la Polimerasa , Factores de Tiempo
17.
PLoS One ; 9(8): e106510, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25171164

RESUMEN

Assessing phytoplankton diversity is of primary importance for both basic and applied ecological studies. Following the advances in molecular methods, phytoplankton studies are switching from using classical microscopy to high throughput sequencing approaches. However, methodological comparisons of these approaches have rarely been reported. In this study, we compared the two methods, using a unique dataset of multiple water samples taken from a natural freshwater environment. Environmental DNA was extracted from 300 water samples collected weekly during 20 years, followed by high throughput sequencing of amplicons from the 16S and 18S rRNA hypervariable regions. For each water sample, phytoplankton diversity was also estimated using light microscopy. Our study indicates that species compositions detected by light microscopy and 454 high throughput sequencing do not always match. High throughput sequencing detected more rare species and picoplankton than light microscopy, and thus gave a better assessment of phytoplankton diversity. However, when compared to light microscopy, high throughput sequencing of 16S and 18S rRNA amplicons did not adequately identify phytoplankton at the species level. In summary, our study recommends a combined strategy using both morphological and molecular techniques.


Asunto(s)
ADN Ribosómico/genética , Agua Dulce , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fitoplancton/clasificación , Microscopía , Filogenia , Fitoplancton/citología , Fitoplancton/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN/métodos
18.
Appl Environ Microbiol ; 79(21): 6803-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23995927

RESUMEN

Horizontal gene transfer is common in cyanobacteria, and transfer of large gene clusters may lead to acquisition of new functions and conceivably niche adaption. In the present study, we demonstrate that horizontal gene transfer between closely related Planktothrix strains can explain the production of the same oligopeptide isoforms by strains of different colors. Comparison of the genomes of eight Planktothrix strains revealed that strains producing the same oligopeptide isoforms are closely related, regardless of color. We have investigated genes involved in the synthesis of the photosynthetic pigments phycocyanin and phycoerythrin, which are responsible for green and red appearance, respectively. Sequence comparisons suggest the transfer of a functional phycoerythrin gene cluster generating a red phenotype in a strain that is otherwise more closely related to green strains. Our data show that the insertion of a DNA fragment containing the 19.7-kb phycoerythrin gene cluster has been facilitated by homologous recombination, also replacing a region of the phycocyanin operon. These findings demonstrate that large DNA fragments spanning entire functional gene clusters can be effectively transferred between closely related cyanobacterial strains and result in a changed phenotype. Further, the results shed new light on the discussion of the role of horizontal gene transfer in the sporadic distribution of large gene clusters in cyanobacteria, as well as the appearance of red and green strains.


Asunto(s)
Cianobacterias/genética , Transferencia de Gen Horizontal/genética , Familia de Multigenes/genética , Fenotipo , Ficoeritrina/genética , Secuencia de Bases , Análisis por Conglomerados , Color , Recombinación Homóloga/genética , Lagos/microbiología , Funciones de Verosimilitud , Modelos Genéticos , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Noruega , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Appl Environ Microbiol ; 79(8): 2642-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23396340

RESUMEN

Parasitic chytrid fungi can inflict significant mortality on cyanobacteria but frequently fail to keep cyanobacterial dominance and bloom formation in check. Our study tested whether oligopeptide production, a common feature in many cyanobacteria, can be a defensive mechanism against chytrid parasitism. The study employed the cyanobacterial strain Planktothrix NIVA-CYA126/8 and its mutants with knockout mutations for microcystins, anabaenopeptins, and microviridins, major oligopeptide classes to be found in NIVA-CYA126/8. Four chytrid strains were used as parasite models. They are obligate parasites of Planktothrix and are unable to exploit alternative food sources. All chytrid strains were less virulent to the NIVA-CYA126/8 wild type than to at least one of its oligopeptide knockout mutants. One chytrid strain even failed to infect the wild type, while exhibiting considerable virulence to all mutants. It is therefore evident that producing microcystins, microviridins, and/or anabaenopeptins can reduce the virulence of chytrids to Planktothrix, thereby increasing the host's chance of survival. Microcystins and anabaenopeptins are nonribosomal oligopeptides, while microviridins are produced ribosomally, suggesting that Planktothrix resists chytrids by relying on metabolites that are produced via distinct biosynthetic pathways. Chytrids, on the other hand, can adapt to the oligopeptides produced by Planktothrix in different ways. This setting most likely results in an evolutionary arms race, which would probably lead to Planktothrix and chytrid population structures that closely resemble those actually found in nature. In summary, the findings of the present study suggest oligopeptide production in Planktothrix to be part of a defensive mechanism against chytrid parasitism.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Hongos/fisiología , Oligopéptidos/metabolismo , Antifúngicos/química , Proteínas Bacterianas/genética , Cianobacterias/clasificación , Cianobacterias/genética , ADN Bacteriano/genética , Técnicas de Inactivación de Genes , Interacciones Microbianas , Microcistinas/genética , Microcistinas/metabolismo , Oligopéptidos/biosíntesis , Oligopéptidos/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Filogenia , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética
20.
Appl Environ Microbiol ; 79(2): 508-15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23124237

RESUMEN

Several Planktothrix strains, each producing a distinct oligopeptide profile, have been shown to coexist within Lake Steinsfjorden (Norway). Using nonribosomal peptide synthetase (NRPS) genes as markers, it has been shown that the Planktothrix community comprises distinct genetic variants displaying differences in bloom dynamics, suggesting a Planktothrix subpopulation structure. Here, we investigate the Planktothrix variants inhabiting four lakes in southeast of Norway utilizing both NRPS and non-NRPS genes. Phylogenetic analyses showed similar topologies for both NRPS and non-NRPS genes, and the lakes appear to have similar structuring of Planktothrix genetic variants. The structure of distinct variants was also supported by very low genetic diversity within variants compared to the between-variant diversity. Incongruent topologies and split decomposition revealed recombination events between Planktothrix variants. In several strains the gene variants seem to be a result of recombination. Both NRPS and non-NRPS genes are dominated by purifying selection; however, sites subjected to positive selection were also detected. The presence of similar and well-separated Planktothrix variants with low internal genetic diversity indicates gene flow within Planktothrix populations. Further, the low genetic diversity found between lakes (similar range as within lakes) indicates gene flow also between Planktothrix populations and suggests recent, or recurrent, dispersals. Our data also indicate that recombination has resulted in new genetic variants. Stability within variants and the development of new variants are likely to be influenced by selection patterns and within-variant homologous recombination.


Asunto(s)
Cianobacterias/genética , Agua Dulce/microbiología , Flujo Génico , Recombinación Genética , Selección Genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , Variación Genética , Datos de Secuencia Molecular , Noruega , Péptido Sintasas/genética , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...