Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 4211, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918615

RESUMEN

The aging-protective gene α-Klotho (KL) produces two main transcripts. The full-length mRNA generates a transmembrane protein that after proteolytic ectodomain shedding can be detected in serum as processed Klotho (p-KL), and a shorter transcript which codes for a putatively secreted protein (s-KL). Both isoforms exhibit potent pleiotropic beneficial properties, although previous reports showed negative side effects on mineral homeostasis after increasing p-KL concentration exogenously. Here, we expressed independently both isoforms using gene transfer vectors, to assess s-KL effects on mineral metabolism. While mice treated with p-KL presented altered expression of several kidney ion channels, as well as altered levels of Pi and Ca2+ in blood, s-KL treated mice had levels comparable to Null-treated control mice. Besides, bone gene expression of Fgf23 showed a fourfold increase after p-KL treatment, effects not observed with the s-KL isoform. Similarly, bone microstructure parameters of p-KL-treated mice were significantly worse than in control animals, while this was not observed for s-KL, which showed an unexpected increase in trabecular thickness and cortical mineral density. As a conclusion, s-KL (but not p-KL) is a safe therapeutic strategy to exploit KL anti-aging protective effects, presenting no apparent negative effects over mineral metabolism and bone microstructure.


Asunto(s)
Huesos , Glucuronidasa , Proteínas Klotho , Animales , Ratones , Huesos/metabolismo , Glucuronidasa/genética , Glucuronidasa/metabolismo , Riñón/metabolismo , Ratones Noqueados , Minerales/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Klotho/metabolismo
2.
Neuroreport ; 33(14): 623-628, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36062512

RESUMEN

N-methyl-D-aspartate (NMDA) receptor antagonists mediate adult neurogenic effects. Here, the neurogenic effect of a new NMDA receptor antagonist endowed with neuroprotective effects in Alzheimer's disease mice model. Nine-month-old senescence-accelerated mouse prone 8 (SAMP8) with UB-ALT-EV were orally treated. 5-Bromo-2-deoxyuridine (BrdU) (50 mg/kg) was 3× injected I.P. every 2 h. After 28 days of treatment, SAMP8-treated group improved working memory. Moreover, the number of BrdU+ cells and DCX+ cells in the SAMP8 dentate gyrus (DG) was significantly increased. GFAP+ cells were not affected by treatment. Together, these results provided evidence that UB-ALT-EV promotes the survival and proliferation of neural progenitor cells in the aged SAMP8 hippocampus.


Asunto(s)
Células-Madre Neurales , Receptores de N-Metil-D-Aspartato , Envejecimiento , Animales , Bromodesoxiuridina , Hipocampo/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Int J Artif Organs ; 44(12): 998-1012, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33863248

RESUMEN

OBJECTIVE: The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. METHODS: Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from decellularized organs. Moreover, the long-term structural, ultrastructural, and biomechanical effect of cryopreservation of decellularized tracheas were also estimated. RESULTS: Two percent SDS was the most effective detergent tested concerning cell removal and preservation of the histological and biomechanical properties of the tracheal wall. However, long-term cryopreservation had no an appreciable effect on the structure, ultrastructure, and biomechanics of decellularized tracheal rings. CONCLUSION: The results presented here reinforce the use of SDS as a valuable decellularizing agent for porcine tracheas. Furthermore, a cryogenic preservation protocol is described, which has minimal impact on the histological and biomechanical properties of decellularized porcine tracheas.


Asunto(s)
Andamios del Tejido , Tráquea , Criopreservación , Matriz Extracelular , Octoxinol , Porcinos , Ingeniería de Tejidos
4.
Ageing Res Rev ; 67: 101271, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33571701

RESUMEN

While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Fármacos Neuroprotectores , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/farmacología , Epigénesis Genética , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Resveratrol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA