Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood Transfus ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37235734

RESUMEN

BACKGROUND: The collection of the first blood flow into a diversion pouch (DP) has become widely adopted in blood donation systems to reduce whole-blood unit contamination from skin bacteria. The strict control of pre-analytical variables, such as blood collection and proper anticoagulant selection, is critical to diminish experimental variability when studying different aspects of platelet biology. We hypothesize that the functional, mitochondrial, and metabolomic profiles of platelets isolated from the DP are not different from the ones isolated from standard venipuncture (VP), thus representing a suitable collection method of platelets for experimental purposes. MATERIALS AND METHODS: Whole blood from the blood DP or VP was collected. Platelets were subsequently isolated and washed following standard protocols. Platelet function was assessed by flow cytometry, light transmission aggregometry, clot retraction, and under flow conditions using the total thrombus formation analyzer (T-TAS). Mitochondrial function and the platelet metabolome profiles were determined by the Seahorse extracellular flux analyzer (Agilent, Santa Clara, CA, USA) and ultra-high-pressure liquid chromatography-mass spectrometry metabolomics, respectively. RESULTS: Platelets isolated from VP and the DP have similar functional, mitochondrial, and metabolic profiles with no significant differences between both groups at baseline and upon activation by any of the assays mentioned above. DISCUSSION: The findings of our study support the use of platelets from the DP for performing functional and metabolic studies on platelets from a wide range of blood donors. The DP may serve as an alternative blood collection method to standard VP, allowing the study of diverse aspects of platelet biology, such as age, sex, race, and ethnicity, in many eligible individuals for blood donation.

2.
Subcell Biochem ; 102: 343-363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36600139

RESUMEN

Higher access to medical care, advanced diagnostic tools, and overall public health improvements have favored increased humans lifespan. With a growing proportion of older adults, the associated costs to care for ageing-associated conditions will continue to grow. This chapter highlights recent cellular and clinical evidence of platelets at an older age, from the hyperreactive phenotype associated with thrombosis to the well-known hallmarks of ageing identifiable in platelets and their potential functional implications on platelets at an older age. Therefore, it is imperative to understand platelets' molecular and cellular mechanisms during ageing in health and disease. New knowledge will favor the development of new ways to prevent some of the age-associated complications where platelets are key players.


Asunto(s)
Plaquetas , Trombosis , Humanos , Anciano , Trombosis/genética , Envejecimiento
3.
J Mammary Gland Biol Neoplasia ; 26(4): 341-355, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34813005

RESUMEN

Breast cancer (BC) is the leading cause of cancer-related death in women in the world. Since tumor cells employ autophagy as a survival pathway, it has been proposed that autophagy inhibition could be beneficial for cancer treatment. There are several onging clinical trials where autophagy is being inhibited (using chloroquine, CQ or hydroxychloroquine, HCQ) along with chemotherapy with promising results. However, there is also in vitro evidence in which autophagy inhibition can induce epithelial to mesenchymal transition (EMT) in cancer cells, indicating that, at least in some cases, this strategy could be detrimental for cancer patients. In this study, we found that the genetic inhibition of autophagy primed cells for EMT by inducing a decrease in E-cadherin protein levels, while CQ treatment decreased E-cadherin levels, induced morphological changes related to EMT, increased EMT-related transcription factor (EMT-TF) expression and migration in estrogen receptor positive (ER +) BC cell lines. Importantly, CQ treatment increased intracellular reactive oxygen species (ROS) which induced the secretion of macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine related to malignancy. Both ROS production and MIF secretion were responsible for the mesenchymal morphology and increased migratory capacity induced by CQ. Our results indicate that CQ treatment increased malignancy by inducing ROS production, MIF secretion and EMT and suggest that autophagy inhibition in ER + BC patients might have detrimental effects. Our data indicates that a careful selection of patients should be performed in order to determine who will benefit the most from autophagy inhibition with available pharmacological agents for the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Factores Inhibidores de la Migración de Macrófagos , Neoplasias de la Mama/tratamiento farmacológico , Cadherinas , Línea Celular , Línea Celular Tumoral , Cloroquina/farmacología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Hidroxicloroquina/farmacología , Factores Inhibidores de la Migración de Macrófagos/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
Cell Signal ; 86: 110075, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34229086

RESUMEN

Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Neoplasias de la Mama Triple Negativas , Autofagia , Línea Celular Tumoral , Humanos , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Biology (Basel) ; 8(4)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554173

RESUMEN

The manipulation of autophagy for cancer therapy has gained recent interest in clinical settings. Although inhibition of autophagy is currently being used in clinical trials for the treatment of several malignancies, autophagy has been shown to have diverse implications for normal cell homeostasis, cancer cell survival, and signaling to cells in the tumor microenvironment. Among these implications and of relevance for cancer therapy, the autophagic process is known to be involved in the regulation of protein secretion, in tumor cell immunogenicity, and in the regulation of epithelial-to-mesenchymal transition (EMT), a critical step in the process of cancer cell invasion. In this work, we have reviewed recent evidence linking autophagy to the regulation of EMT in cancer and normal epithelial cells, and have discussed important implications for the manipulation of autophagy during cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...