Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Front Neurosci ; 18: 1389680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933816

RESUMEN

Introduction: The Human Connectome Project (HCP) has become a keystone dataset in human neuroscience, with a plethora of important applications in advancing brain imaging methods and an understanding of the human brain. We focused on tractometry of HCP diffusion-weighted MRI (dMRI) data. Methods: We used an open-source software library (pyAFQ; https://yeatmanlab.github.io/pyAFQ) to perform probabilistic tractography and delineate the major white matter pathways in the HCP subjects that have a complete dMRI acquisition (n = 1,041). We used diffusion kurtosis imaging (DKI) to model white matter microstructure in each voxel of the white matter, and extracted tract profiles of DKI-derived tissue properties along the length of the tracts. We explored the empirical properties of the data: first, we assessed the heritability of DKI tissue properties using the known genetic linkage of the large number of twin pairs sampled in HCP. Second, we tested the ability of tractometry to serve as the basis for predictive models of individual characteristics (e.g., age, crystallized/fluid intelligence, reading ability, etc.), compared to local connectome features. To facilitate the exploration of the dataset we created a new web-based visualization tool and use this tool to visualize the data in the HCP tractometry dataset. Finally, we used the HCP dataset as a test-bed for a new technological innovation: the TRX file-format for representation of dMRI-based streamlines. Results: We released the processing outputs and tract profiles as a publicly available data resource through the AWS Open Data program's Open Neurodata repository. We found heritability as high as 0.9 for DKI-based metrics in some brain pathways. We also found that tractometry extracts as much useful information about individual differences as the local connectome method. We released a new web-based visualization tool for tractometry-"Tractoscope" (https://nrdg.github.io/tractoscope). We found that the TRX files require considerably less disk space-a crucial attribute for large datasets like HCP. In addition, TRX incorporates a specification for grouping streamlines, further simplifying tractometry analysis.

2.
Magn Reson Med Sci ; 23(3): 316-340, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38866532

RESUMEN

Diffusion-weighted MRI (dMRI) provides a unique non-invasive view of human brain tissue properties. The present review article focuses on tractometry analysis methods that use dMRI to assess the properties of brain tissue within the long-range connections comprising brain networks. We focus specifically on the major white matter tracts that convey visual information. These connections are particularly important because vision provides rich information from the environment that supports a large range of daily life activities. Many of the diseases of the visual system are associated with advanced aging, and tractometry of the visual system is particularly important in the modern aging society. We provide an overview of the tractometry analysis pipeline, which includes a primer on dMRI data acquisition, voxelwise model fitting, tractography, recognition of white matter tracts, and calculation of tract tissue property profiles. We then review dMRI-based methods for analyzing visual white matter tracts: the optic nerve, optic tract, optic radiation, forceps major, and vertical occipital fasciculus. For each tract, we review background anatomical knowledge together with recent findings in tractometry studies on these tracts and their properties in relation to visual function and disease. Overall, we find that measurements of the brain's visual white matter are sensitive to a range of disorders and correlate with perceptual abilities. We highlight new and promising analysis methods, as well as some of the current barriers to progress toward integration of these methods into clinical practice. These barriers, such as variability in measurements between protocols and instruments, are targets for future development.


Asunto(s)
Vías Visuales , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Vías Visuales/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Trastornos de la Visión/diagnóstico por imagen , Trastornos de la Visión/fisiopatología
3.
Neuroinformatics ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763989

RESUMEN

NeuroHackademy ( https://neurohackademy.org ) is a two-week event designed to train early-career neuroscience researchers in data science methods and their application to neuroimaging. The event seeks to bridge the big data skills gap by introducing participants to data science methods and skills that are often ignored in traditional curricula. Such skills are needed for the analysis and interpretation of the kinds of large and complex datasets that have become increasingly important to neuroimaging research due to concerted data collection efforts. In 2020, the event rapidly pivoted from an in-person event to an online event that included hundreds of participants from all over the world. This experience and those of the participants substantially changed our valuation of large online-accessible events. In subsequent events held in 2022 and 2023, we have developed a "hybrid" format that includes both online and in-person participants. We discuss the technical and sociotechnical elements of hybrid events and discuss some of the lessons we have learned while organizing them. We emphasize in particular the role that these events can play in creating a global and inclusive community of practice in the intersection of neuroimaging and data science.

4.
Dev Cogn Neurosci ; 67: 101386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676989

RESUMEN

Coarse measures of socioeconomic status, such as parental income or parental education, have been linked to differences in white matter development. However, these measures do not provide insight into specific aspects of an individual's environment and how they relate to brain development. On the other hand, educational intervention studies have shown that changes in an individual's educational context can drive measurable changes in their white matter. These studies, however, rarely consider socioeconomic factors in their results. In the present study, we examined the unique relationship between educational opportunity and white matter development, when controlling other known socioeconomic factors. To explore this question, we leveraged the rich demographic and neuroimaging data available in the ABCD study, as well the unique data-crosswalk between ABCD and the Stanford Education Data Archive (SEDA). We find that educational opportunity is related to accelerated white matter development, even when accounting for other socioeconomic factors, and that this relationship is most pronounced in white matter tracts associated with academic skills. These results suggest that the school a child attends has a measurable relationship with brain development for years to come.


Asunto(s)
Escolaridad , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Masculino , Femenino , Niño , Factores Socioeconómicos , Encéfalo/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Preescolar , Imagen de Difusión Tensora
5.
Commun Med (Lond) ; 4(1): 72, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605245

RESUMEN

BACKGROUND: Sensory changes due to aging or disease can impact brain tissue. This study aims to investigate the link between glaucoma, a leading cause of blindness, and alterations in brain connections. METHODS: We analyzed diffusion MRI measurements of white matter tissue in a large group, consisting of 905 glaucoma patients (aged 49-80) and 5292 healthy individuals (aged 45-80) from the UK Biobank. Confounds due to group differences were mitigated by matching a sub-sample of controls to glaucoma subjects. We compared classification of glaucoma using convolutional neural networks (CNNs) focusing on the optic radiations, which are the primary visual connection to the cortex, against those analyzing non-visual brain connections. As a control, we evaluated the performance of regularized linear regression models. RESULTS: We showed that CNNs using information from the optic radiations exhibited higher accuracy in classifying subjects with glaucoma when contrasted with CNNs relying on information from non-visual brain connections. Regularized linear regression models were also tested, and showed significantly weaker classification performance. Additionally, the CNN was unable to generalize to the classification of age-group or of age-related macular degeneration. CONCLUSIONS: Our findings indicate a distinct and potentially non-linear signature of glaucoma in the tissue properties of optic radiations. This study enhances our understanding of how glaucoma affects brain tissue and opens avenues for further research into how diseases that affect sensory input may also affect brain aging.


In this study, we explored the relationship between glaucoma, the most common cause of blindness, and changes within the brain. We used data from diffusion MRI, a measurement method which assesses the properties of brain connections. We examined 905 individuals with glaucoma alongside 5292 healthy people. We refined the test cohort to be closely matched in age, sex, ethnicity, and socioeconomic backgrounds. The use of deep learning neural networks allowed accurate detection of glaucoma by focusing on the tissue properties of the optic radiations, a major brain pathway that transmits visual information, rather than other brain pathways used for comparison. Our work provides additional evidence that brain connections may age differently based on varying sensory inputs.

6.
J Neural Eng ; 21(2)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38452381

RESUMEN

Objective.Retinal prostheses evoke visual precepts by electrically stimulating functioning cells in the retina. Despite high variance in perceptual thresholds across subjects, among electrodes within a subject, and over time, retinal prosthesis users must undergo 'system fitting', a process performed to calibrate stimulation parameters according to the subject's perceptual thresholds. Although previous work has identified electrode-retina distance and impedance as key factors affecting thresholds, an accurate predictive model is still lacking.Approach.To address these challenges, we (1) fitted machine learning models to a large longitudinal dataset with the goal of predicting individual electrode thresholds and deactivation as a function of stimulus, electrode, and clinical parameters ('predictors') and (2) leveraged explainable artificial intelligence (XAI) to reveal which of these predictors were most important.Main results.Our models accounted for up to 76% of the perceptual threshold response variance and enabled predictions of whether an electrode was deactivated in a given trial with F1 and area under the ROC curve scores of up to 0.732 and 0.911, respectively. Our models identified novel predictors of perceptual sensitivity, including subject age, time since blindness onset, and electrode-fovea distance.Significance.Our results demonstrate that routinely collected clinical measures and a single session of system fitting might be sufficient to inform an XAI-based threshold prediction strategy, which has the potential to transform clinical practice in predicting visual outcomes.


Asunto(s)
Prótesis Visuales , Humanos , Inteligencia Artificial , Electrodos Implantados , Retina/fisiología , Aprendizaje Automático , Estimulación Eléctrica/métodos
7.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339908

RESUMEN

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Simulación por Computador , Encéfalo/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
8.
Dev Cogn Neurosci ; 65: 101341, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219709

RESUMEN

Cross-sectional studies have linked differences in white matter tissue properties to reading skills. However, past studies have reported a range of, sometimes conflicting, results. Some studies suggest that white matter properties act as individual-level traits predictive of reading skill, whereas others suggest that reading skill and white matter develop as a function of an individual's educational experience. In the present study, we tested two hypotheses: a) that diffusion properties of the white matter reflect stable brain characteristics that relate to stable individual differences in reading ability or b) that white matter is a dynamic system, linked with learning over time. To answer these questions, we examined the relationship between white matter and reading in a five-year longitudinal dataset and a series of large-scale, single-observation, cross-sectional datasets (N = 14,249 total participants). We find that gains in reading skill correspond to longitudinal changes in the white matter. However, in the cross-sectional datasets, we find no evidence for the hypothesis that individual differences in white matter predict reading skill. These findings highlight the link between dynamic processes in the white matter and learning.


Asunto(s)
Sustancia Blanca , Humanos , Alfabetización , Estudios Transversales , Encéfalo , Cognición , Lectura
9.
J Neurosci ; 44(6)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38124006

RESUMEN

Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its predominance in the EEG signal, large variations can be observed in alpha properties during development, with an increase in alpha frequency over childhood and adulthood. Here, we tested the hypothesis that these changes in alpha rhythm are related to the maturation of visual white matter pathways. We capitalized on a large diffusion MRI (dMRI)-EEG dataset (dMRI n = 2,747, EEG n = 2,561) of children and adolescents of either sex (age range, 5-21 years old) and showed that maturation of the optic radiation specifically accounts for developmental changes of alpha frequency. Behavioral analyses also confirmed that variations of alpha frequency are related to maturational changes in visual perception. The present findings demonstrate the close link between developmental variations in white matter tissue properties, electrophysiological responses, and behavior.


Asunto(s)
Sustancia Blanca , Humanos , Niño , Adolescente , Preescolar , Adulto Joven , Adulto , Sustancia Blanca/diagnóstico por imagen , Ritmo alfa , Imagen de Difusión por Resonancia Magnética , Percepción Visual , Vías Visuales , Encéfalo/fisiología
10.
IEEE Access ; 11: 117159-117176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078207

RESUMEN

Many physical processes display complex high-dimensional time-varying behavior, from global weather patterns to brain activity. An outstanding challenge is to express high dimensional data in terms of a dynamical model that reveals their spatiotemporal structure. Dynamic Mode Decomposition is a means to achieve this goal, allowing the identification of key spatiotemporal modes through the diagonalization of a finite dimensional approximation of the Koopman operator. However, these methods apply best to time-translationally invariant or stationary data, while in many typical cases, dynamics vary across time and conditions. To capture this temporal evolution, we developed a method, Non-Stationary Dynamic Mode Decomposition, that generalizes Dynamic Mode Decomposition by fitting global modulations of drifting spatiotemporal modes. This method accurately predicts the temporal evolution of modes in simulations and recovers previously known results from simpler methods. To demonstrate its properties, the method is applied to multi-channel recordings from an awake behaving non-human primate performing a cognitive task.

11.
bioRxiv ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609201

RESUMEN

Many physical processes display complex high-dimensional time-varying behavior, from global weather patterns to brain activity. An outstanding challenge is to express high dimensional data in terms of a dynamical model that reveals their spatiotemporal structure. Dynamic Mode Decomposition is a means to achieve this goal, allowing the identification of key spatiotemporal modes through the diagonalization of a finite dimensional approximation of the Koopman operator. However, DMD methods apply best to time-translationally invariant or stationary data, while in many typical cases, dynamics vary across time and conditions. To capture this temporal evolution, we developed a method, Non-Stationary Dynamic Mode Decomposition (NS-DMD), that generalizes DMD by fitting global modulations of drifting spatiotemporal modes. This method accurately predicts the temporal evolution of modes in simulations and recovers previously known results from simpler methods. To demonstrate its properties, the method is applied to multi-channel recordings from an awake behaving non-human primate performing a cognitive task.

12.
Proc Natl Acad Sci U S A ; 120(33): e2303491120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549280

RESUMEN

The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.


Asunto(s)
Nacimiento Prematuro , Sustancia Blanca , Lactante , Femenino , Humanos , Recién Nacido , Sustancia Blanca/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Recien Nacido Prematuro , Vaina de Mielina , Encéfalo/diagnóstico por imagen
14.
Hum Brain Mapp ; 44(8): 3123-3135, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36896869

RESUMEN

The neural pathways that carry information from the foveal, macular, and peripheral visual fields have distinct biological properties. The optic radiations (OR) carry foveal and peripheral information from the thalamus to the primary visual cortex (V1) through adjacent but separate pathways in the white matter. Here, we perform white matter tractometry using pyAFQ on a large sample of diffusion MRI (dMRI) data from subjects with healthy vision in the U.K. Biobank dataset (UKBB; N = 5382; age 45-81). We use pyAFQ to characterize white matter tissue properties in parts of the OR that transmit information about the foveal, macular, and peripheral visual fields, and to characterize the changes in these tissue properties with age. We find that (1) independent of age there is higher fractional anisotropy, lower mean diffusivity, and higher mean kurtosis in the foveal and macular OR than in peripheral OR, consistent with denser, more organized nerve fiber populations in foveal/parafoveal pathways, and (2) age is associated with increased diffusivity and decreased anisotropy and kurtosis, consistent with decreased density and tissue organization with aging. However, anisotropy in foveal OR decreases faster with age than in peripheral OR, while diffusivity increases faster in peripheral OR, suggesting foveal/peri-foveal OR and peripheral OR differ in how they age.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Sustancia Blanca , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sustancia Blanca/diagnóstico por imagen , Fibras Nerviosas , Visión Ocular , Tálamo , Anisotropía , Vías Visuales/diagnóstico por imagen
15.
medRxiv ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798201

RESUMEN

To provide appropriate levels of stimulation, retinal prostheses must be calibrated to an individual's perceptual thresholds ('system fitting'), despite thresholds varying drastically across subjects, across electrodes within a subject, and over time. Although previous work has identified electrode-retina distance and impedance as key factors affecting thresholds, an accurate predictive model is still lacking. To address these challenges, we 1) fitted machine learning (ML) models to a large longitudinal dataset with the goal of predicting individual electrode thresholds and deactivation as a function of stimulus, electrode, and clinical parameters ('predictors') and 2) leveraged explainable artificial intelligence (XAI) to reveal which of these predictors were most important. Our models accounted for up to 77% of the perceptual threshold response variance and enabled predictions of whether an electrode was deactivated in a given trial with F1 and AUC scores of up to 0.740 and 0.913, respectively. Deactivation and threshold models identified novel predictors of perceptual sensitivity, including subject age, time since blindness onset, and electrode-fovea distance. Our results demonstrate that routinely collected clinical measures and a single session of system fitting might be sufficient to inform an XAI-based threshold prediction strategy, which may transform clinical practice in predicting visual outcomes.

18.
Sci Data ; 9(1): 616, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224186

RESUMEN

We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Niño , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen , Sustancia Blanca/diagnóstico por imagen
19.
Front Neurosci ; 16: 901337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090266

RESUMEN

Two of the main obstacles to the development of epiretinal prosthesis technology are electrodes that require current amplitudes above safety limits to reliably elicit percepts, and a failure to consistently elicit pattern vision. Here, we explored the causes of high current amplitude thresholds and poor spatial resolution within the Argus II epiretinal implant. We measured current amplitude thresholds and two-point discrimination (the ability to determine whether one or two electrodes had been stimulated) in 3 blind participants implanted with Argus II devices. Our data and simulations show that axonal stimulation, lift and retinal damage all play a role in reducing performance in the Argus 2, by either limiting sensitivity and/or reducing spatial resolution. Understanding the relative role of these various factors will be critical for developing and surgically implanting devices that can successfully subserve pattern vision.

20.
PLoS One ; 16(11): e0250755, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34724000

RESUMEN

The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, endangering the trust in conclusions. We explored the instability of results by instrumenting a structural connectome estimation pipeline with Monte Carlo Arithmetic to introduce random noise throughout. We evaluated the reliability of the connectomes, the robustness of their features, and the eventual impact on analysis. The stability of results was found to range from perfectly stable (i.e. all digits of data significant) to highly unstable (i.e. 0 - 1 significant digits). This paper highlights the potential of leveraging induced variance in estimates of brain connectivity to reduce the bias in networks without compromising reliability, alongside increasing the robustness and potential upper-bound of their applications in the classification of individual differences. We demonstrate that stability evaluations are necessary for understanding error inherent to brain imaging experiments, and how numerical analysis can be applied to typical analytical workflows both in brain imaging and other domains of computational sciences, as the techniques used were data and context agnostic and globally relevant. Overall, while the extreme variability in results due to analytical instabilities could severely hamper our understanding of brain organization, it also affords us the opportunity to increase the robustness of findings.


Asunto(s)
Encéfalo/fisiología , Conectoma , Modelos Neurológicos , Red Nerviosa/fisiología , Humanos , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...