Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 13(5): 520-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23026390

RESUMEN

Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase.


Asunto(s)
Alcaloides de Berberina/metabolismo , Berberina/metabolismo , Ácidos Grasos/metabolismo , Membranas/metabolismo , Mitocondrias/metabolismo , Alcaloides/metabolismo , Cationes/metabolismo , Hidrógeno/metabolismo , Membranas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Plastoquinona/metabolismo
2.
Curr Pharm Des ; 19(15): 2795-806, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23092317

RESUMEN

Novel penetrating cations were used for the design of mitochondria-targeted compounds and tested in model lipid membranes, in isolated mitochondria and in living human cells in culture. Rhodamine-19, berberine and palmatine were conjugated by aliphatic linkers with plastoquinone possessing antioxidant activity. These conjugates (SkQR1,SkQBerb, SkQPalm) and their analogs lacking plastoquinol moiety (C12R1,C10Berb and C10Palm) penetrated bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria of living cells due to membrane potential negative inside. Reduced forms of SkQR1, SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In human fibroblasts SkQR1, SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by hydrogen peroxide. SkQR1 was effective at subnanomolar concentrations while SkQberb, SkQPalm and SkQ1 (prototypic conjugate of plastoquinone with dodecyltriphenylphosphonium) were effective at 10-times higher concentrations. The aliphatic conjugates of berberine and palmatine (as well as the conjugates of triphenylphosphonium) induced proton transport mediated by free fatty acids (FA) both in the model and mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. In contrast to the other cationic conjugates, SkQR1 and C12R1 induced FA-independent proton conductivity due to protonation/deprotonation of the rhodamine residue. This property in combination with the antioxidant activity probably makes rhodamine conjugates highly effective in protection against oxidative stress. The novel cationic conjugates described here are promising candidates for drugs against various pathologies and aging as mitochondria-targeted antioxidants and selective mild uncouplers.


Asunto(s)
Mitocondrias/metabolismo , Cationes , Células HeLa , Humanos , Membrana Dobles de Lípidos , Membranas Artificiales , Fosfolípidos/metabolismo
3.
Biochim Biophys Acta ; 1797(6-7): 878-89, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20307489

RESUMEN

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Asunto(s)
Antioxidantes/farmacología , Cardiolipinas/metabolismo , Ácidos Grasos/metabolismo , Plastoquinona/análogos & derivados , Animales , Antioxidantes/química , Cardiolipinas/química , Diseño de Fármacos , Humanos , Técnicas In Vitro , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Oxidación-Reducción , Plastoquinona/química , Plastoquinona/farmacología , Ratas
4.
Proc Natl Acad Sci U S A ; 107(2): 663-8, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20080732

RESUMEN

A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization.


Asunto(s)
Cationes/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/metabolismo , Senescencia Celular , Citosol/fisiología , Humanos , Concentración de Iones de Hidrógeno , Hipotiroidismo/fisiopatología , Cinética , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/fisiología , Neoplasias/patología , Obesidad/fisiopatología , Compuestos Onio/metabolismo , Compuestos Organofosforados/metabolismo , Plastoquinona/análogos & derivados , Plastoquinona/farmacología , Protones , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
Biochim Biophys Acta ; 1767(9): 1164-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17692814

RESUMEN

In this paper, we studied effects of phosphonium dications P2C5 and P2C10 on bilayer planar phospholipid membrane (BLM) and rat liver mitochondria. In line with our previous observations [M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P. Skulachev, H.G. Kjaergaard, R.A. Smith, M.P. Murphy, Accumulation of lipophilic dications by mitochondria and cells, Biochem. J. 400 (2006) 199-208], we showed both P2C5 and P2C10 are cationic penetrants for BLM. They generated transmembrane diffusion potential (Delta Psi), the compartment with a lower dication concentration positive. However, the Delta Psi values measured proved to be lower that the Nernstian. This fact could be explained by rather low BLM conductance for the cations at their small concentrations and by induction of some BLM damage at their large concentrations. The damage in question consisted in appearance of non-Ohmic current/voltage relationships which increased in time. Such a non-Ohmicity was especially strong at Delta Psi >100 mV. Addition of penetrating lipophilic anion TPB, which increases the BLM conductance for lipophilic cations, yielded the Nernstian Delta Psi, i.e. 30 mV per ten-fold dication gradient. In the State 4 mitochondria, dications stimulated respiration and lowered Delta Psi. Moreover, they inhibited the State 3 respiration with succinate or glutamate and malate (but not with TMPD and ascorbate) in an uncoupler-sensitive fashion. Effect on the in State 4 mitochondria, similarly to that on BLM, was accounted for by a time-dependent membrane damage. On the other hand, the State 3 effect was most probably due to inhibition of the respiratory chain Complex I and/or Complex III. The damaging and inhibitory activities of lipophilic dications should be taken into account when one considers a possibility to use them as a vehicle to target antioxidants or other compounds to mitochondria.


Asunto(s)
Cationes , Membrana Dobles de Lípidos/química , Mitocondrias/metabolismo , Fosfolípidos/química , Animales , Aniones , Antioxidantes/metabolismo , Electroquímica/métodos , Cinética , Hígado/metabolismo , Potencial de la Membrana Mitocondrial , Potenciales de la Membrana , Mitocondrias Hepáticas/metabolismo , Modelos Biológicos , Modelos Químicos , Ratas
6.
Nat Struct Biol ; 10(11): 948-54, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14528295

RESUMEN

Cellular import of colicin E3 is initiated by the Escherichia coli outer membrane cobalamin transporter, BtuB. The 135-residue 100-A coiled-coil receptor-binding domain (R135) of colicin E3 forms a 1:1 complex with BtuB whose structure at a resolution of 2.75 A is reported. Binding of R135 to the BtuB extracellular surface (DeltaG(o) = -12 kcal mol(-1)) is mediated by 27 residues of R135 near the coiled-coil apex. Formation of the R135-BtuB complex results in unfolding of R135 N- and C-terminal ends, inferred to be important for unfolding of the colicin T-domain. Small conformational changes occur in the BtuB cork and barrel domains but are insufficient to form a translocation channel. The absence of a channel and the peripheral binding of R135 imply that BtuB serves to bind the colicin, and that the coiled-coil delivers the colicin to a neighboring outer membrane protein for translocation, thus forming a colicin translocon. The translocator was concluded to be OmpF from the occlusion of OmpF channels by colicin E3.


Asunto(s)
Colicinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Receptores de Péptidos/metabolismo , Proteínas de la Membrana Bacteriana Externa , Proteínas de Transporte de Membrana , Porinas/metabolismo , Estructura Terciaria de Proteína
7.
Biochem Biophys Res Commun ; 302(4): 865-8, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12646251

RESUMEN

The effect of cytochrome c on the kinetic properties of ion channels formed by O-pyromellitylgramicidin (OPg), the negatively charged analogue of gramicidin A (gA), in bilayer lipid membranes was studied by the method of sensitized photoinactivation. The addition of cytochrome c to both sides of the membrane caused substantial deceleration of the photoinactivation kinetics of OPg channels which expose three negative charges to the aqueous phase at both sides of the membrane. By contrast, the gA photoinactivation kinetics was unaltered by the addition of cytochrome c. Based on the sensitivity of the observed effect to the ionic strength of the bathing solution, the cytochrome c-induced deceleration of the OPg photoinactivation kinetics reflecting the increase in the OPg channel lifetime was ascribed to electrostatic interaction of positive charges of cytochrome c with negative charges of OPg that resulted in channel clustering. Formation of clusters of OPg channels was previously inferred to explain the polylysine effect on the OPg channel kinetics. The decelerating effect of cytochrome c on OPg channels was observed only at a high number of OPg channels in the membrane, thus suggesting that the interaction between cytochrome c and the charged transmembrane protein requires sufficiently high negative charge density on the surface of the membrane.


Asunto(s)
Grupo Citocromo c/metabolismo , Gramicidina/metabolismo , Luz , Membrana Dobles de Lípidos/metabolismo , Animales , Gramicidina/análogos & derivados , Caballos , Modelos Moleculares , Miocardio/enzimología , Estructura Cuaternaria de Proteína , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...