Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 333(6039): 199-202, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21680811

RESUMEN

Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

2.
Nature ; 461(7268): 1254-7, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19865165

RESUMEN

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.

3.
Philos Trans A Math Phys Eng Sci ; 365(1854): 1241-6, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17293318

RESUMEN

Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.

4.
Nature ; 442(7106): 1011-3, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16943831

RESUMEN

Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

5.
Nature ; 440(7081): 181-3, 2006 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-16525465

RESUMEN

Gamma-ray bursts (GRBs) and their afterglows are the most brilliant transient events in the Universe. Both the bursts themselves and their afterglows have been predicted to be visible out to redshifts of z approximately 20, and therefore to be powerful probes of the early Universe. The burst GRB 000131, at z = 4.50, was hitherto the most distant such event identified. Here we report the discovery of the bright near-infrared afterglow of GRB 050904 (ref. 4). From our measurements of the near-infrared afterglow, and our failure to detect the optical afterglow, we determine the photometric redshift of the burst to be z = 6.39 - 0.12 + 0.11 (refs 5-7). Subsequently, it was measured spectroscopically to be z = 6.29 +/- 0.01, in agreement with our photometric estimate. These results demonstrate that GRBs can be used to trace the star formation, metallicity, and reionization histories of the early Universe.

6.
Nature ; 437(7060): 851-4, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16208363

RESUMEN

Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z approximately 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10'') and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from--and the localization of--the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...