Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Toxicol Methods ; 123: 107270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164235

RESUMEN

The ICH E14/S7B Questions and Answers (Q&As) guideline introduces the concept of a "double negative" nonclinical scenario (negative hERG assay and negative in vivo QTc study) to demonstrate that a drug does not produce a clinically relevant QT prolongation (i.e., no QT liability). This nonclinical "double negative" data package, along with negative Phase 1 clinical QTc data, may be sufficient to substitute for a clinical Thorough QT (TQT) study in some specific cases. While standalone GLP in vivo cardiovascular studies in non-rodent species are standard practice during nonclinical drug development for small molecule programs, a variety of approaches to the design, conduct, analysis and interpretation are utilized across pharmaceutical companies and contract research organizations (CROs) that may, in some cases, negatively impact the stringent sensitivity needed to fulfill the new Q&As. Subject matter experts from both Pharma and CROs have collaborated to recommend best practices for more robust nonclinical cardiovascular telemetry studies in non-rodent species, with input from clinical and regulatory experts. The aim was to increase consistency and harmonization across the industry and to ensure delivery of high quality nonclinical QTc data to meet the proposed sensitivities defined within the revised ICH E14/S7B Q&As guideline (Q&As 5.1 and 6.1). The detailed best practice recommendations presented here cover the design and execution of the safety pharmacology cardiovascular study, including optimal methods for acquiring, analyzing, reporting, and interpreting the resulting QTc and pharmacokinetic data to allow for direct comparison to clinical exposures and assessment of safety margin for QTc prolongation.


Asunto(s)
Sistema Cardiovascular , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Telemetría , Electrocardiografía
2.
Cell Biol Toxicol ; 39(6): 2793-2819, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37093397

RESUMEN

GABAA receptors, members of the pentameric ligand-gated ion channel superfamily, are widely expressed in the central nervous system and mediate a broad range of pharmaco-toxicological effects including bidirectional changes to seizure threshold. Thus, detection of GABAA receptor-mediated seizure liabilities is a big, partly unmet need in early preclinical drug development. This is in part due to the plethora of allosteric binding sites that are present on different subtypes of GABAA receptors and the critical lack of screening methods that detect interactions with any of these sites. To improve in silico screening methods, we assembled an inventory of allosteric binding sites based on structural data. Pharmacophore models representing several of the binding sites were constructed. These models from the NeuroDeRisk IL Profiler were used for in silico screening of a compiled collection of drugs with known GABAA receptor interactions to generate testable hypotheses. Amoxapine was one of the hits identified and subjected to an array of in vitro assays to examine molecular and cellular effects on neuronal excitability and in vivo locomotor pattern changes in zebrafish larvae. An additional level of analysis for our compound collection is provided by pharmacovigilance alerts using FAERS data. Inspired by the Adverse Outcome Pathway framework, we postulate several candidate pathways leading from specific binding sites to acute seizure induction. The whole workflow can be utilized for any compound collection and should inform about GABAA receptor-mediated seizure risks more comprehensively compared to standard displacement screens, as it rests chiefly on functional data.


Asunto(s)
Receptores de GABA-A , Pez Cebra , Animales , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsiones/inducido químicamente , Sitios de Unión , Ácido gamma-Aminobutírico
3.
Clin Pharmacol Ther ; 109(2): 310-318, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32866317

RESUMEN

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based "double-negative" nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.


Asunto(s)
Drogas en Investigación/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Animales , Arritmias Cardíacas/inducido químicamente , Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Electrocardiografía/métodos , Humanos , Medición de Riesgo , Torsades de Pointes/inducido químicamente
4.
Drug Discov Today ; 25(7): 1129-1134, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209428

RESUMEN

Our goal is to accurately predict all types of cardiovascular events in patients utilising nonclinical cardiovascular safety data. In the past two decades, cardiovascular safety science has primarily focused on events associated with the electrocardiogram. Broadening out to other cardiovascular parameters, we share real-life case studies that highlight our progress towards improved and better-informed project progression based upon use of disease models, mechanism-based translation and structure-function relationships. To fulfil this goal, further advances in patient-relevant humanised models will be required to enable cardiovascular safety science to keep pace with the ever-changing landscape of novel therapeutic paradigms.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Evaluación Preclínica de Medicamentos/métodos , Humanos , Medición de Riesgo , Relación Estructura-Actividad
5.
Pharmacol Res Perspect ; 3(5): e00175, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516587

RESUMEN

Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development.

6.
Blood ; 102(10): 3646-51, 2003 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907444

RESUMEN

Purine nucleotides acting through P2 receptors play key roles in platelet signaling. The P2X1 receptor is an adenosine triphosphate (ATP)-gated ion channel that mediates a rapid calcium influx signal, but can also synergize with subsequent adenosine diphosphate (ADP)-evoked P2Y1 receptor-mediated responses and thus may contribute to platelet activation during hemostasis. Recent studies have shown that P2X1 receptors contribute to the formation of platelet thrombi, particularly under conditions of high shear stress. Based on intracellular Ca2+ measurements a previous report has suggested that a splice variant of the P2X1 receptor, P2X1del, is expressed in platelets and, in contrast to the full-length P2X1WT receptor, is activated by ADP. In the present study we show that the P2X1del receptor fails to form functional ion channels and is below the limit of detection in human platelets. Furthermore, ADP does not contribute to the rapid ionotropic P2X receptor-mediated response in platelets. These results support the notion that ATP is the principal physiologic agonist at P2X1 receptors and that it plays a role in the activation of platelets.


Asunto(s)
Adenosina Difosfato/farmacología , Adenosina Trifosfato/fisiología , Hemostasis , Proteínas de la Membrana , Receptores Purinérgicos P2/metabolismo , Trombosis/etiología , Adenosina Trifosfato/farmacología , Empalme Alternativo , Plaquetas/metabolismo , Señalización del Calcio , Línea Celular , Electrofisiología , Humanos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/fisiología , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y12 , Transfección
7.
Thromb Haemost ; 88(3): 495-502, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12353081

RESUMEN

G-protein-coupled P2Y1 and P2Y12 receptors play key roles in platelet activation, however the importance of ionotropic P2X1 receptors remains unclear. Platelet P2X1 responses are highly labile in vitro, but were greatly enhanced by increasing [Ca2+]o in the range 1-10 mM. The P2X1 agonist alpha,beta-MeATP stimulated a shape change which saturated at peak [Ca2+]i of > or = 400 nM, without evidence for aggregation. The maximal P2X1-evoked transmission decrease was 82% of that obtained via P2Y1 receptors. alpha,beta-MeATP caused a disc to sphere transformation in virtually all platelets, but lacked the long processes produced by ADP. Following block of P2Y1 receptors with A3P5PS, co-stimulation with alpha,beta,-MeATP and ADP failed to induce aggregation despite the generation of peak [Ca2+]i responses similar to those stimulated via P2Y1 receptors. Therefore early, transient Ca2+ influx via P2X1 receptors can contribute to platelet activation by stimulating a significant morphological change, but does not readily synergise with P2Y12 receptors to support aggregation.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Calcio/farmacología , Activación Plaquetaria , Receptores Purinérgicos P2/fisiología , Adenosina Difosfato/farmacología , Adenosina Trifosfato/farmacología , Plaquetas/citología , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Tamaño de la Célula/efectos de los fármacos , Humanos , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Agonistas del Receptor Purinérgico P2 , Antagonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y1
8.
Br J Pharmacol ; 135(2): 363-72, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11815371

RESUMEN

We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric P2X(1) receptors. P2X(1) receptor deficiency had no effect on MK (CD 41) numbers or size distribution, showing that it is not essential for normal MK development. P2Y receptor-stimulated [Ca(2+)](i) responses were unaffected in MKs from P2X(1)(-/-) mice, however the inward cation current associated with Ca(2+) release was reduced by approximately 50%, suggesting an interaction between the membrane conductances activated by P2X(1) and P2Y receptors. Interaction between P2X(1) and P2Y receptors in human platelets was also examined using [Ca(2+)](i) recordings from cell suspensions. Alpha,beta-meATP (10 microM) evoked a rapid transient P2X(1) receptor-mediated increase in [Ca(2+)](i), whereas ADP-(10 microM) evoked P2Y receptor responses were slower, peaked at a higher level and remained elevated for longer periods. Co-application of alpha, beta-meATP and ADP resulted in marked acceleration and amplification of the peak [Ca(2+)](i) response. We conclude that ionotropic P2X(1) receptors may play a priming role in the subsequent activation of metabotropic P2Y receptors during platelet stimulation.


Asunto(s)
Plaquetas/metabolismo , Megacariocitos/metabolismo , Receptores Purinérgicos P2/biosíntesis , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/fisiología , Animales , Plaquetas/efectos de los fármacos , Calcio/metabolismo , Humanos , Megacariocitos/efectos de los fármacos , Ratones , Ratones Mutantes , Agonistas del Receptor Purinérgico P2 , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...