Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Res Eur ; 4: 68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883262

RESUMEN

The prevalence of hormone-related health issues caused by exposure to endocrine disrupting chemicals (EDCs) is a significant, and increasing, societal challenge. Declining fertility rates together with rising incidence rates of reproductive disorders and other endocrine-related diseases underscores the urgency in taking more action. Addressing the growing threat of EDCs in our environment demands robust and reliable test methods to assess a broad variety of endpoints relevant for endocrine disruption. EDCs also require effective regulatory frameworks, especially as the current move towards greater reliance on non-animal methods in chemical testing puts to test the current paradigm for EDC identification, which requires that an adverse effect is observed in an intact organism. Although great advances have been made in the field of predictive toxicology, disruption to the endocrine system and subsequent adverse health effects may prove particularly difficult to predict without traditional animal models. The MERLON project seeks to expedite progress by integrating multispecies molecular research, new approach methodologies (NAMs), human clinical epidemiology, and systems biology to furnish mechanistic insights and explore ways forward for NAM-based identification of EDCs. The focus is on sexual development and function, from foetal sex differentiation of the reproductive system through mini-puberty and puberty to sexual maturity. The project aims are geared towards closing existing knowledge gaps in understanding the effects of EDCs on human health to ultimately support effective regulation of EDCs in the European Union and beyond.

2.
Science ; 383(6687): 1057, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38452094

RESUMEN

A single photonic device accommodates three different modes of operation.

3.
Andrology ; 12(2): 396-409, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37354024

RESUMEN

BACKGROUND: An important issue for young men affected by testicular germ cell tumor (TGCT) is how TGCT and its treatment will affect, transiently or permanently, their future reproductive health. Previous studies have reported that xenobiotics can induce changes on human sperm epigenome and have the potential to promote epigenetic alterations in the offspring. OBJECTIVES: Here, we report the first longitudinal DNA methylation profiling of frozen sperm from a TGCT patient before and up to 2 years after a bleomycin, etoposide, and cisplatin (BEP) chemotherapy. MATERIALS AND METHODS: A TGCT was diagnosed in a 30-year-old patient. A cryopreservation of spermatozoa was proposed before adjuvant BEP treatment. Semen samples were collected before and after chemotherapy at 6, 9, 12, and 24 months. The DNA methylation status was determined by RRBS to detect DNA differentially methylated regions (DMRs). RESULTS: The analysis revealed that among the 74 DMRs showing modified methylation status 6 months after therapy, 17 remained altered 24 months after treatment. We next associated DMRs with differentially methylated genes (DMGs), which were subsequently intersected with loci known to be important or expressed during early development. DISCUSSION AND CONCLUSION: The consequences of the cancer treatment on the sperm epigenome during the recovery periods are topical issues of increasing significance as epigenetic modifications to the paternal genome may have deleterious effects on the offspring. The altered methylated status of these DMGs important for early development might modify their expression pattern and thus affect their function during key stages of embryogenesis, potentially leading to developmental disorders or miscarriages.


Asunto(s)
Metilación de ADN , Neoplasias de Células Germinales y Embrionarias , Semen , Neoplasias Testiculares , Humanos , Masculino , Adulto , Estudios Longitudinales , Espermatozoides/metabolismo
4.
Eur Urol ; 83(5): 441-451, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801089

RESUMEN

BACKGROUND: Intratumor heterogeneity (ITH) is a key feature in clear cell renal cell carcinomas (ccRCCs) that impacts outcomes such as aggressiveness, response to treatments, or recurrence. In particular, it may explain tumor relapse after surgery in clinically low-risk patients who did not benefit from adjuvant therapy. Recently, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to unravel expression ITH (eITH) and might enable better assessment of clinical outcomes in ccRCC. OBJECTIVE: To explore eITH in ccRCC with a focus on malignant cells (MCs) and assess its relevance to improve prognosis for low-risk patients. DESIGN, SETTING, AND PARTICIPANTS: We performed scRNA-seq on tumor samples from five untreated ccRCC patients ranging from pT1a to pT3b. Data were complemented with a published dataset composed of pairs of matched normal and ccRCC samples. INTERVENTION: Radical or partial nephrectomy on untreated ccRCC patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Viability and cell type proportions were determined by flow cytometry. Following scRNA-seq, a functional analysis was performed and tumor progression trajectories were inferred. A deconvolution approach was applied on an external cohort, and Kaplan-Meier survival curves were estimated with respect to the prevalence of malignant clusters. RESULTS AND LIMITATIONS: We analyzed 54 812 cells and identified 35 cell subpopulations. The eITH analysis revealed that each tumor contained various degrees of clonal diversity. The transcriptomic signatures of MCs in one particularly heterogeneous sample were used to design a deconvolution-based strategy that allowed the risk stratification of 310 low-risk ccRCC patients. CONCLUSIONS: We described eITH in ccRCCs, and used this information to establish significant cell population-based prognostic signatures and better discriminate ccRCC patients. This approach has the potential to improve the stratification of clinically low-risk patients and their therapeutic management. PATIENT SUMMARY: We sequenced the RNA content of individual cell subpopulations composed of clear cell renal cell carcinomas and identified specific malignant cells the genetic information of which can be used to predict tumor progression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Pronóstico , Estadificación de Neoplasias , Recurrencia Local de Neoplasia/patología , Biomarcadores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis
5.
Arch Toxicol ; 97(3): 849-863, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653537

RESUMEN

Exposure to endocrine-disrupting chemicals (EDCs) during development may cause reproductive disorders in women. Although female reproductive endpoints are assessed in rodent toxicity studies, a concern is that typical endpoints are not sensitive enough to detect chemicals of concern to human health. If so, measured endpoints must be improved or new biomarkers of effects included. Herein, we have characterized the dynamic transcriptional landscape of developing rat ovaries exposed to two well-known EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ), by 3' RNA sequencing. Rats were orally exposed from day 7 of gestation until birth, and from postnatal day 1 until days 6, 14 or 22. Three exposure doses for each chemical were used: 3, 6 and 12 µg/kg bw/day of DES; 3, 6, 12 mg/kg bw/day of KTZ. The transcriptome changed dynamically during perinatal development in control ovaries, with 1137 differentially expressed genes (DEGs) partitioned into 3 broad expression patterns. A cross-species deconvolution strategy based on a mouse ovary developmental cell atlas was used to map any changes to ovarian cellularity across the perinatal period to allow for characterization of actual changes to gene transcript levels. A total of 184 DEGs were observed across dose groups and developmental stages in DES-exposed ovaries, and 111 DEGs in KTZ-exposed ovaries across dose groups and developmental stages. Based on our analyses, we have identified new candidate biomarkers for female reproductive toxicity induced by EDC, including Kcne2, Calb2 and Insl3.


Asunto(s)
Disruptores Endocrinos , Canales de Potasio con Entrada de Voltaje , Humanos , Embarazo , Ratones , Femenino , Ratas , Animales , Dietilestilbestrol/toxicidad , Ovario , Disruptores Endocrinos/toxicidad , Cetoconazol , Reproducción , Canales de Potasio con Entrada de Voltaje/farmacología
6.
Opt Express ; 30(13): 22957-22962, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36224985

RESUMEN

We demonstrate a multi-branch frequency comb for spectral purity transfer incorporating hardware enabled noise cancellation based on a cw noise transfer laser. We verify coherent frequency transfer at stabilities ≈ 2×10-18 in 1 second and < 5×10-21 in 10,000 seconds without any reference cavity.

7.
Opt Express ; 30(1): 427-435, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201219

RESUMEN

We shape the spectrum of an octave spanning supercontinuum from an erbium fiber laser. The group delay dispersion is controlled through the temperature profile of a chirped fiber Bragg grating. We demonstrate control of spectral broadening, switching in spectral windows, and optimizing power at six wavelengths corresponding to Yb, Ca, and Sr clock transitions, an f-2f pair, and a C-band reference for frequency transfer applications. We verify locking of the shaped f-2f beat note, and the coherence of the shaped supercontinuum by interference with an unshaped supercontinuum branch with relative frequency deviation of 10-17 at 1 s averaging time.

8.
J Clin Endocrinol Metab ; 107(6): 1647-1661, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35147701

RESUMEN

CONTEXT: Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects. OBJECTIVE: Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture. DESIGN AND SETTING: Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10-8 to 10-3 M) or vehicle control. MAIN OUTCOME MEASURES: Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP, and APAP metabolites in conditioned culture media. RESULTS: APAP reduced the total cell number specifically in 10- to 12-DW ovaries, induced cell death, and decreased KI67-positive cell density independently of fetal age. APAP targeted subpopulations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP. CONCLUSIONS: Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10- to 12-DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.


Asunto(s)
Disruptores Endocrinos , Ovario , Acetaminofén/toxicidad , Femenino , Feto , Humanos , Masculino , Embarazo , Primer Trimestre del Embarazo
9.
Bioinform Adv ; 2(1): vbac019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699406

RESUMEN

Motivation: Dot plots are heatmap-like charts that provide a compact way to simultaneously display two quantitative information by means of dots of different sizes and colors. Despite the popularity of this visualization method, particularly in single-cell RNA-sequencing (scRNA-seq) studies, existing tools used to make dot plots are limited in terms of functionality and usability. Results: We developed FlexDotPlot, an R package for generating dot plots from multifaceted data, including scRNA-seq data. It provides a universal and easy-to-use solution with a high versatility. An interactive R Shiny application is also available allowing non-R users to easily generate dot plots with several tunable parameters. Availability and implementation: Source code and detailed manual are available on CRAN (stable version) and at https://github.com/Simon-Leonard/FlexDotPlot (development version). Code to reproduce figures is available at https://github.com/Simon-Leonard/FlexDotPlot_paper. A Shiny app is available as a stand-alone application within the package. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

10.
Int J Genomics ; 2021: 9028667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368340

RESUMEN

Gene dosage is an important issue both in cell and evolutionary biology. Most genes are present in two copies or alleles in diploid eukariotic cells. The most outstanding exception is monoallelic gene expression (MA) that concerns genes localized on the X chromosome or in regions undergoing parental imprinting in eutherians, and many other genes scattered throughout the genome. In diploids, haploinsufficiency (HI) implies that a single functional copy of a gene in a diploid organism is insufficient to ensure a normal biological function. One of the most important mechanisms ensuring functional innovation during evolution is whole genome duplication (WGD). In addition to the two WGDs that have occurred in vertebrate genomes, the teleost genomes underwent an additional WGD, after their divergence from tetrapods. In the present work, we have studied on 57 teleost species whether the orthologs of human MA or HI genes remain more frequently in duplicates or returned more frequently in singleton than the rest of the genome. Our results show that the teleost orthologs of HI human genes remained more frequently in duplicate than the rest of the genome in all of the teleost species studied. No signal was observed for the orthologs of genes mapping to the human X chromosome or subjected to parental imprinting. Surprisingly, the teleost orthologs of the other human MA genes remained in duplicate more frequently than the rest of the genome for most teleost species. These results suggest that the teleost orthologs of MA and HI human genes also undergo selective pressures either related to absolute protein amounts and/or of dosage balance issues. However, these constraints seem to be different for MA genes in teleost in comparison with human genomes.

11.
Cells ; 10(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207717

RESUMEN

Timely and efficient elimination of apoptotic substrates, continuously produced during one's lifespan, is a vital need for all tissues of the body. This task is achieved by cells endowed with phagocytic activity. In blood-separated tissues such as the retina, the testis and the ovaries, the resident cells of epithelial origin as retinal pigmented epithelial cells (RPE), testis Sertoli cells and ovarian granulosa cells (GC) provide phagocytic cleaning of apoptotic cells and cell membranes. Disruption of this process leads to functional ablation as blindness in the retina and compromised fertility in males and females. To ensure the efficient elimination of apoptotic substrates, RPE, Sertoli cells and GC combine various mechanisms allowing maintenance of tissue homeostasis and avoiding acute inflammation, tissue disorganization and functional ablation. In tight cooperation with other phagocytosis receptors, MERTK-a member of the TAM family of receptor tyrosine kinases (RTK)-plays a pivotal role in apoptotic substrate cleaning from the retina, the testis and the ovaries through unconventional autophagy-assisted phagocytosis process LAP (LC3-associated phagocytosis). In this review, we focus on the interplay between TAM RTKs, autophagy-related proteins, LAP, and Toll-like receptors (TLR), as well as the regulatory mechanisms allowing these components to sustain tissue homeostasis and prevent functional ablation of the retina, the testis and the ovaries.


Asunto(s)
Células de la Granulosa , Retina , Células de Sertoli , Tirosina Quinasa c-Mer/metabolismo , Animales , Autofagia , Femenino , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Humanos , Masculino , Fagocitosis , Retina/citología , Retina/metabolismo , Retina/patología , Células de Sertoli/citología , Células de Sertoli/metabolismo
12.
FASEB J ; 35(7): e21718, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34105801

RESUMEN

Acetaminophen, aspirin, and ibuprofen are mild analgesics commonly used by pregnant women, the sole current recommendation being to avoid ibuprofen from the fifth month of gestation. The nephrotoxicity of these three analgesics is well documented in adults, as is their interference with prostaglandins biosynthesis. Here we investigated the effect of these analgesics on human first trimester kidneys ex vivo. We first evaluated prostaglandins biosynthesis functionality by performing a wide screening of prostaglandin expression patterns in first trimester human kidneys. We demonstrated that prostaglandins biosynthesis machinery is functional during early nephrogenesis. Human fetal kidney explants aged 7-12 developmental weeks were exposed ex vivo to ibuprofen, aspirin or acetaminophen for 7 days, and analyzed by histology, immunohistochemistry, and flow cytometry. This study has revealed that these analgesics induced a spectrum of abnormalities within early developing structures, ranging from cell death to a decline in differentiating glomeruli density. These results warrant caution for the use of these medicines during the first trimester of pregnancy.


Asunto(s)
Analgésicos/efectos adversos , Feto/efectos de los fármacos , Glomérulos Renales/efectos de los fármacos , Organogénesis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Femenino , Feto/metabolismo , Humanos , Glomérulos Renales/metabolismo , Embarazo , Primer Trimestre del Embarazo/efectos de los fármacos , Prostaglandinas/metabolismo
13.
Opt Express ; 28(25): 37600, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379592

RESUMEN

We provide a corrected figure of our previous publication [Opt. Express25, 18017 (2017)10.1364/OE.25.018017].

14.
J Virol ; 94(24)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32999017

RESUMEN

Viruses have colonized the germ line of our ancestors on several occasions during evolution, leading to the integration in the human genome of viral sequences from over 30 retroviral groups and a few nonretroviruses. Among the recently emerged viruses infecting humans, several target the testis (e.g., human immunodeficiency virus [HIV], Zika virus, and Ebola virus). Here, we aimed to investigate whether human testicular germ cells (TGCs) can support integration by HIV, a contemporary retrovirus that started to spread in the human population during the last century. We report that albeit alternative receptors enabled HIV-1 binding to TGCs, HIV virions failed to infect TGCs in vitro Nevertheless, exposure of TGCs to infected lymphocytes, naturally present in the testis from HIV+ men, led to HIV-1 entry, integration, and early protein expression. Similarly, cell-associated infection or bypassing viral entry led to HIV-1 integration in a spermatogonial cell line. Using DNAscope, HIV-1 and simian immunodeficiency virus (SIV) DNA were detected within a few TGCs in the testis from one infected patient, one rhesus macaque, and one African green monkey in vivo Molecular landscape analysis revealed that early TGCs were enriched in HIV early cofactors up to integration and had overall low antiviral defenses compared with testicular macrophages and Sertoli cells. In conclusion, our study reveals that TGCs can support the entry and integration of HIV upon cell-associated infection. This could represent a way for this contemporary virus to integrate into our germ line and become endogenous in the future, as happened during human evolution for a number of viruses.IMPORTANCE Viruses have colonized the host germ line on many occasions during evolution to eventually become endogenous. Here, we aimed at investigating whether human testicular germ cells (TGCs) can support such viral invasion by studying HIV interactions with TGCs in vitro Our results indicate that isolated primary TGCs express alternative HIV-1 receptors, allowing virion binding but not entry. However, HIV-1 entered and integrated into TGCs upon cell-associated infection and produced low levels of viral proteins. In vivo, HIV-1 and SIV DNA was detected in a few TGCs. Molecular landscape analysis showed that TGCs have overall weak antiviral defenses. Altogether, our results indicate that human TGCs can support HIV-1 early replication, including integration, suggesting potential for endogenization in future generations.


Asunto(s)
Células Germinativas/virología , Infecciones por VIH/virología , VIH-1/genética , Testículo/virología , Animales , Chlorocebus aethiops , Interacciones Huésped-Patógeno , Humanos , Macaca mulatta , Macrófagos/virología , Masculino , Neoplasias de la Próstata , Seminoma , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Espermatogonias , Internalización del Virus , Replicación Viral
15.
Opt Lett ; 45(16): 4377-4380, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796962

RESUMEN

In this Letter, we experimentally demonstrate low noise 300 GHz wave generation based on a Kerr microresonator frequency comb operating in the soliton regime. The spectral purity of a 10 GHz GPS-disciplined dielectric resonant oscillator is transferred to the 300 GHz repetition rate frequency of the soliton comb through an optoelectronic phase-locked loop. Two adjacent comb lines beat on a uni-traveling carrier photodiode emitting the 300 GHz millimeter-wave signal into a waveguide. In an out-of-loop measurement, we measure the 300 GHz power spectral density of phase noise to be -88dBc/Hz, -105dBc/Hz at 10 kHz, and 1 MHz Fourier frequency, respectively. Phase-locking error instability reaches 2×10-15 at 1 s averaging time. Such a system provides a promising path to the realization of compact, low power consumption millimeter-wave oscillators with low noise performance for out-of-the-laboratory applications.

16.
Hum Reprod ; 35(5): 1099-1119, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412604

RESUMEN

STUDY QUESTION: Which transcriptional program triggers sex differentiation in bipotential gonads and downstream cellular events governing fetal testis and ovary development in humans? SUMMARY ANSWER: The characterization of a dynamically regulated protein-coding and non-coding transcriptional landscape in developing human gonads of both sexes highlights a large number of potential key regulators that show an early sexually dimorphic expression pattern. WHAT IS KNOWN ALREADY: Gonadal sex differentiation is orchestrated by a sexually dimorphic gene expression program in XX and XY developing fetal gonads. A comprehensive characterization of its non-coding counterpart offers promising perspectives for deciphering the molecular events underpinning gonad development and for a complete understanding of the etiology of disorders of sex development in humans. STUDY DESIGN, SIZE, DURATION: To further investigate the protein-coding and non-coding transcriptional landscape during gonad differentiation, we used RNA-sequencing (RNA-seq) and characterized the RNA content of human fetal testis (N = 24) and ovaries (N = 24) from 6 to 17 postconceptional week (PCW), a key period in sex determination and gonad development. PARTICIPANTS/MATERIALS, SETTING, METHODS: First trimester fetuses (6-12 PCW) and second trimester fetuses (13-14 and 17 PCW) were obtained from legally induced normally progressing terminations of pregnancy. Total RNA was extracted from whole human fetal gonads and sequenced as paired-end 2 × 50 base reads. Resulting sequences were mapped to the human genome, allowing for the assembly and quantification of corresponding transcripts. MAIN RESULTS AND THE ROLE OF CHANCE: This RNA-seq analysis of human fetal testes and ovaries at seven key developmental stages led to the reconstruction of 22 080 transcripts differentially expressed during testicular and/or ovarian development. In addition to 8935 transcripts displaying sex-independent differential expression during gonad development, the comparison of testes and ovaries enabled the discrimination of 13 145 transcripts that show a sexually dimorphic expression profile. The latter include 1479 transcripts differentially expressed as early as 6 PCW, including 39 transcription factors, 40 long non-coding RNAs and 20 novel genes. Despite the use of stringent filtration criteria (expression cut-off of at least 1 fragment per kilobase of exon model per million reads mapped, fold change of at least 2 and false discovery rate adjusted P values of less than <1%), the possibility of assembly artifacts and of false-positive differentially expressed transcripts cannot be fully ruled out. LARGE-SCALE DATA: Raw data files (fastq) and a searchable table (.xlss) containing information on genomic features and expression data for all refined transcripts have been submitted to the NCBI GEO under accession number GSE116278. LIMITATIONS, REASONS FOR CAUTION: The intrinsic nature of this bulk analysis, i.e. the sequencing of transcripts from whole gonads, does not allow direct identification of the cellular origin(s) of the transcripts characterized. Potential cellular dilution effects (e.g. as a result of distinct proliferation rates in XX and XY gonads) may account for a few of the expression profiles identified as being sexually dimorphic. Finally, transcriptome alterations that would result from exposure to pre-abortive drugs cannot be completely excluded. Although we demonstrated the high quality of the sorted cell populations used for experimental validations using quantitative RT-PCR, it cannot be totally excluded that some germline expression may correspond to cell contamination by, for example, macrophages. WIDER IMPLICATIONS OF THE FINDINGS: For the first time, this study has led to the identification of 1000 protein-coding and non-coding candidate genes showing an early, sexually dimorphic, expression pattern that have not previously been associated with sex differentiation. Collectively, these results increase our understanding of gonad development in humans, and contribute significantly to the identification of new candidate genes involved in fetal gonad differentiation. The results also provide a unique resource that may improve our understanding of the fetal origin of testicular and ovarian dysgenesis syndromes, including cryptorchidism and testicular cancers. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the French National Institute of Health and Medical Research (Inserm), the University of Rennes 1, the French School of Public Health (EHESP), the Swiss National Science Foundation [SNF n° CRS115_171007 to B.J.], the French National Research Agency [ANR n° 16-CE14-0017-02 and n° 18-CE14-0038-02 to F.C.], the Medical Research Council [MR/L010011/1 to P.A.F.] and the European Community's Seventh Framework Programme (FP7/2007-2013) [under grant agreement no 212885 to P.A.F.] and from the European Union's Horizon 2020 Research and Innovation Programme [under grant agreement no 825100 to P.A.F. and S.M.G.]. There are no competing interests related to this study.


Asunto(s)
Diferenciación Sexual , Testículo , Femenino , Feto , Gónadas , Humanos , Masculino , Ovario , Embarazo , Diferenciación Sexual/genética
17.
18.
J Appl Stat ; 47(7): 1191-1207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35707028

RESUMEN

In a multivariate framework, ranking a data set can be done by using an aggregation function in order to obtain a global score for each individual, and then by using these scores to rank the individuals. The choice of the aggregation function (e.g. a weighted sum) and the choice of the parameters of the function (e.g. the weights) may have a great influence on the obtained ranking. We introduce in this communication a ratio index that can quantify the sensitivity of the data set ranking up to a change of weights. This index is investigated in the general case and in the restricted case of top-k rankings. We also illustrate the interest to use such an index to analyse ranked data sets.

19.
Front Genet ; 11: 627007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33633774

RESUMEN

Ubiquitin-specific peptidase 18 (USP18) acts as gatekeeper of type I interferon (IFN) responses by binding to the IFN receptor subunit IFNAR2 and preventing activation of the downstream JAK/STAT pathway. In any given cell type, the level of USP18 is a key determinant of the output of IFN-stimulated transcripts. How the baseline level of USP18 is finely tuned in different cell types remains ill defined. Here, we identified microRNAs (miRNAs) that efficiently target USP18 through binding to the 3'untranslated region (3'UTR). Among these, three miRNAs are particularly enriched in circulating monocytes which exhibit low baseline USP18. Intriguingly, the USP18 3'UTR sequence is duplicated in human and chimpanzee genomes. In humans, four USP18 3'UTR copies were previously found to be embedded in long intergenic non-coding (linc) RNA genes residing in chr22q11.21 and known as FAM247A-D. Here, we further characterized their sequence and measured their expression profile in human tissues. Importantly, we describe an additional lincRNA bearing USP18 3'UTR (here linc-UR-B1) that is expressed only in testis. RNA-seq data analyses from testicular cell subsets revealed a positive correlation between linc-UR-B1 and USP18 expression in spermatocytes and spermatids. Overall, our findings uncover a set of miRNAs and lincRNAs, which may be part of a network evolved to fine-tune baseline USP18, particularly in cell types where IFN responsiveness needs to be tightly controlled.

20.
Sci Rep ; 9(1): 12866, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537814

RESUMEN

Heavy use of cannabis (marijuana) has been associated with decreased semen quality, which may reflect disruption of the endocannabinoid system (ECS) in the male reproductive tract by exogenous cannabinoids. Components of ECS have been previously described in human spermatozoa and in the rodent testis but there is little information on the ECS expression within the human testis. In this study we characterised the main components of the ECS by immunohistochemistry (IHC) on archived testis tissue samples from 15 patients, and by in silico analysis of existing transcriptome datasets from testicular cell populations. The presence of 2-arachidonoylglycerol (2-AG) in the human testis was confirmed by matrix-assisted laser desorption ionization imaging analysis. Endocannabinoid-synthesising enzymes; diacylglycerol lipase (DAGL) and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), were detected in germ cells and somatic cells, respectively. The cannabinoid receptors, CNR1 and CNR2 were detected at a low level in post-meiotic germ cells and Leydig- and peritubular cells. Different transcripts encoding distinct receptor isoforms (CB1, CB1A, CB1B and CB2A) were also differentially distributed, mainly in germ cells. The cannabinoid-metabolising enzymes were abundantly present; the α/ß-hydrolase domain-containing protein 2 (ABHD2) in all germ cell types, except early spermatocytes, the monoacylglycerol lipase (MGLL) in Sertoli cells, and the fatty acid amide hydrolase (FAAH) in late spermatocytes and post-meiotic germ cells. Our findings are consistent with a direct involvement of the ECS in regulation of human testicular physiology, including spermatogenesis and Leydig cell function. The study provides new evidence supporting observations that recreational cannabis can have possible deleterious effects on human testicular function.


Asunto(s)
Ácidos Araquidónicos/biosíntesis , Endocannabinoides/biosíntesis , Glicéridos/biosíntesis , Receptor Cannabinoide CB1/biosíntesis , Receptor Cannabinoide CB2/biosíntesis , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Adulto , Amidohidrolasas/metabolismo , Humanos , Hidrolasas/metabolismo , Lipoproteína Lipasa/metabolismo , Masculino , Monoacilglicerol Lipasas/metabolismo , Fosfolipasa D/metabolismo , Análisis de Semen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...