Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 492: 200-211, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36273621

RESUMEN

Germ granules harbor processes that maintain germline integrity and germline stem cell capacity. Depleting core germ granule components in C. elegans leads to the reprogramming of germ cells, causing them to express markers of somatic differentiation in day-two adults. Somatic reprogramming is associated with complete sterility at this stage. The resulting germ cell atrophy and other pleiotropic defects complicate our understanding of the initiation of reprogramming and how processes within germ granules safeguard the totipotency and immortal potential of germline stem cells. To better understand the initial events of somatic reprogramming, we examined total mRNA (transcriptome) and polysome-associated mRNA (translatome) changes in a precision full-length deletion of glh-1, which encodes a homolog of the germline-specific Vasa/DDX4 DEAD-box RNA helicase. Fertile animals at a permissive temperature were analyzed as young adults, a stage that precedes by 24 â€‹h the previously determined onset of somatic reporter-gene expression in the germline. Two significant changes are observed at this early stage. First, the majority of neuropeptide-encoding transcripts increase in both the total and polysomal mRNA fractions, suggesting that GLH-1 or its effectors suppress this expression. Second, there is a significant decrease in Major Sperm Protein (MSP)-domain mRNAs when glh-1 is deleted. We find that the presence of GLH-1 helps repress spermatogenic expression during oogenesis, but boosts MSP expression to drive spermiogenesis and sperm motility. These insights define an early role for GLH-1 in repressing somatic reprogramming to maintain germline integrity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuropéptidos , Animales , Masculino , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Motilidad Espermática , Semen/metabolismo , Células Germinativas/metabolismo , Espermatogénesis/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Cell Rep Methods ; 2(4): 100203, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35497499

RESUMEN

The regulation of gene expression via protein translation is critical for growth, development, and stress response. While puromycin-based techniques have been used to quantify protein translation in C. elegans, they have been limited to using lysate from whole worms. To achieve tissue-specific quantification of ribosome activity in intact C. elegans, we report the application of O-propargyl-puromycin in a cuticle defective mutant followed by conjugation of an azide fluorophore for detection using fluorescent confocal microscopy. We apply this technique to quantify translation in response to heat shock, cycloheximide, or knockdown of translation factors. Furthermore, we demonstrate that O-propargyl-puromycin can be used to quantify translation between tissues or within a tissue like the germline. This technique is expected to have a broad range of applications in determining how protein translation is altered in different tissues in response to stress or gene knockdowns or with age.


Asunto(s)
Caenorhabditis elegans , Biosíntesis de Proteínas , Animales , Caenorhabditis elegans/genética , Puromicina/farmacología , Microscopía Fluorescente
3.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289480

RESUMEN

Our knowledge about the repertoire of ribosomal RNA modifications and the enzymes responsible for installing them is constantly expanding. Previously, we reported that NSUN-5 is responsible for depositing m5C at position C2381 on the 26S rRNA in Caenorhabditis elegans. Here, we show that NSUN-1 is writing the second known 26S rRNA m5C at position C2982. Depletion of nsun-1 or nsun-5 improved thermotolerance and slightly increased locomotion at midlife, however, only soma-specific knockdown of nsun-1 extended lifespan. Moreover, soma-specific knockdown of nsun-1 reduced body size and impaired fecundity, suggesting non-cell-autonomous effects. While ribosome biogenesis and global protein synthesis were unaffected by nsun-1 depletion, translation of specific mRNAs was remodeled leading to reduced production of collagens, loss of structural integrity of the cuticle, and impaired barrier function. We conclude that loss of a single enzyme required for rRNA methylation has profound and highly specific effects on organismal development and physiology.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Longevidad/fisiología , Metiltransferasas/metabolismo , Animales , Caenorhabditis elegans , Femenino , Fertilidad/fisiología , Oogénesis/fisiología , Procesamiento Postranscripcional del ARN/fisiología
4.
Bio Protoc ; 10(17): e3742, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-33659402

RESUMEN

An important but often overlooked aspect of gene regulation occurs at the level of protein translation. Many genes are regulated not only by transcription but by their propensity to be recruited to actively translating ribosomes (polysomes). Polysome profiling allows for the separation of unbound 40S and 60S subunits, 80S monosomes, and actively translating mRNA bound by two or more ribosomes. Thus, this technique allows for actively translated mRNA to be isolated. Transcript abundance can then be compared between actively translated mRNA and all mRNA present in a sample to identify instances of post-transcriptional regulation. Additionally, polysome profiling can be used as a readout of global translation rates by quantifying the proportion of actively translating ribosomes within a sample. Previously established protocols for polysome profiling rely on the absorbance of RNA to visualize the presence of polysomes within the fractions. However, with the advent of flow cells capable of detecting fluorescence, the association of fluorescently tagged proteins with polysomes can be detected and quantified in addition to the absorbance of RNA. This protocol provides detailed instructions on how to perform fluorescent polysome profiling in C. elegans to collect actively translated mRNA, to quantify changes in global translation, and to detect ribosomal binding partners.

5.
Cell Rep ; 28(4): 1050-1062.e6, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340143

RESUMEN

Reduced mRNA translation delays aging, but the underlying mechanisms remain underexplored. Mutations in both DAF-2 (IGF-1 receptor) and RSKS-1 (ribosomal S6 kinase/S6K) cause synergistic lifespan extension in C. elegans. To understand the roles of translational regulation in this process, we performed polysomal profiling and identified translationally regulated ribosomal and cytochrome c (CYC-2.1) genes as key mediators of longevity. cyc-2.1 knockdown significantly extends lifespan by activating the intestinal mitochondrial unfolded protein response (UPRmt), mitochondrial fission, and AMP-activated kinase (AMPK). The germline serves as the key tissue for cyc-2.1 to regulate lifespan, and germline-specific cyc-2.1 knockdown non-autonomously activates intestinal UPRmt and AMPK. Furthermore, the RNA-binding protein GLD-1-mediated translational repression of cyc-2.1 in the germline is important for the non-autonomous activation of UPRmt and synergistic longevity of the daf-2 rsks-1 mutant. Altogether, these results illustrate a translationally regulated non-autonomous mitochondrial stress response mechanism in the modulation of lifespan by insulin-like signaling and S6K.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación hacia Abajo/genética , Activación Enzimática , Genes de Helminto , Genoma , Células Germinativas/metabolismo , Dinámicas Mitocondriales , Mutación/genética , Especificidad de Órganos , Transducción de Señal , Respuesta de Proteína Desplegada
6.
Life Sci Alliance ; 2(4)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31253655

RESUMEN

Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3' UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5' UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.


Asunto(s)
Caenorhabditis elegans/genética , Restricción Calórica , Longevidad/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5' , Empalme Alternativo , Aminoácidos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Intrones/genética , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Neuropéptidos/metabolismo , Biosíntesis de Proteínas/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Motivos de Unión al ARN , Telomerasa/metabolismo , Transcriptoma
7.
J Gerontol A Biol Sci Med Sci ; 72(4): 473-480, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158466

RESUMEN

Genetic changes resulting in increased life span are often positively associated with enhanced stress resistance and somatic maintenance. A recent study found that certain long-lived Caenorhabditis elegans mutants spent a decreased proportion of total life in a healthy state compared with controls, raising concerns about how the relationship between health and longevity is assessed. We evaluated seven markers of health and two health-span models for their suitability in assessing age-associated health in invertebrates using C elegans strains not expected to outperform wild-type animals. Additionally, we used an empirical method to determine the transition point into failing health based on the greatest rate of change with age for each marker. As expected, animals with mutations causing sickness or accelerated aging had reduced health span when compared chronologically to wild-type animals. Physiological health span, the proportion of total life spent healthy, was reduced for locomotion markers in chronically ill mutants, but, surprisingly, was extended for thermotolerance. In contrast, all short-lived mutants had reduced "quality-of-life" in another model recently employed for assessing invertebrate health. Results suggest that the interpretation of physiological health span is not straightforward, possibly because it factors out time and thus does not account for the added cost of extrinsic forces on longer-lived strains.


Asunto(s)
Caenorhabditis elegans/fisiología , Longevidad/fisiología , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Fertilidad , Fluorescencia , Genotipo , Locomoción , Longevidad/genética , Contracción Muscular/fisiología , Mutación , Estrés Oxidativo , Músculos Faríngeos/fisiología , Estrés Fisiológico , Termotolerancia
8.
Theor Appl Genet ; 126(11): 2803-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23918065

RESUMEN

KEY MESSAGE: Spring growth in barley controlled by natural variation at Vrn-H1 and Vrn-H2 improved yield stability in marginal Syrian environments. The objective of the present study was to identify QTL influencing agronomic performance in rain-fed Mediterranean environments in a recombinant inbred line (RIL) population, ARKE derived from the Syrian barley landrace, Arta and the Australian feed cultivar, Keel. The population was field tested for agronomic performance at two locations in Syria for 4 years with two sowing dates, in autumn and winter. Genotypic variability in yield of the RIL population was mainly affected by year-to-year variation presumably caused by inter-annual differences in rainfall distribution. The spring growth habit and early flowering inherited from the Australian cultivar Keel increased plant height and biomass and improved yield stability in Syrian environments. QTL for yield and biomass coincided with the map location of flowering time genes, in particular the vernalisation genes Vrn-H1 and Vrn-H2. In marginal environments with terminal drought, the Vrn-H1 allele inherited from Keel improved final biomass and yield. Under changing climate conditions, such as shorter winters, reduced rainfall, and early summer drought, spring barley might thus outperform the traditional vernalisation-sensitive Syrian landraces. We present the ARKE population as a valuable genetic resource to further elucidate the genetics of drought adaptation of barley in the field.


Asunto(s)
Ecosistema , Flores/genética , Flores/fisiología , Genes de Plantas/genética , Variación Genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Marcadores Genéticos , Fenotipo , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Siria
9.
J Bone Miner Res ; 21(1): 105-12, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16355279

RESUMEN

UNLABELLED: BMD is highly heritable; however, little is known about the genes. To identify loci controlling BMD, we conducted a QTL analysis in a (B6 x 129) F2 population of mice. We report on additional QTLs and also narrow one QTL by combining the data from multiple crosses and through haplotype analysis. INTRODUCTION: Previous studies have identified quantitative trait loci (QTL) that determine BMD in mice; however, identification of genes underlying QTLs is impeded by the large size of QTL regions. MATERIALS AND METHODS: To identify loci controlling BMD, we performed a QTL analysis of 291 (B6 x 129) F2 females. Total body and vertebral areal BMD (aBMD) were determined by peripheral DXA when mice were 20 weeks old and had consumed a high-fat diet for 14 weeks. RESULTS AND CONCLUSIONS: Two QTLs were common for both total body and vertebral aBMD: Bmd20 on chromosome (Chr) 6 (total aBMD; peak cM 26, logarithm of odds [LOD] 3.8, and vertebral aBMD; cM 32, LOD 3.6) and Bmd22 on Chr 1 (total aBMD; cM 104, LOD 2.5, and vertebral aBMD; cM 98, LOD 2.6). A QTL on Chr 10 (Bmd21, cM 68, LOD 3.0) affected total body aBMD and a QTL on Chr 7 (Bmd9, cM 44, LOD 2.7) affected vertebral aBMD. A pairwise genome-wide search did not reveal significant gene-gene interactions. Collectively, the QTLs accounted for 21.6% of total aBMD and 17.3% of vertebral aBMD of the F(2) population variances. Bmd9 was previously identified in a cross between C57BL/6J and C3H/HeJ mice, and we narrowed this QTL from 34 to 22 cM by combining the data from these crosses. By examining the Bmd9 region for conservation of ancestral alleles among the low allele strains (129S1/SvImJ and C3H/HeJ) that differed from the high allele strain (C57BL/6J), we further narrowed the region to approximately 9.9 cM, where the low allele strains share a common haplotype. Identifying the genes for these QTLs will enhance our understanding of skeletal biology.


Asunto(s)
Densidad Ósea/genética , Cruzamientos Genéticos , Sitios de Carácter Cuantitativo/genética , Animales , Haplotipos , Ratones , Ratones Endogámicos
10.
Mamm Genome ; 16(3): 152-63, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15834632

RESUMEN

Quantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstone-promoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans. We detected seven single QTLs: three new, significant QTLs were named Lith17 [chromosome (Chr) 5, peak=60 cM, LOD=5.4], Lith18 (Chr 5, 76 cM, LOD=4.3), and Lith19 (Chr 8, 0 cM, LOD=5.3); two confirmed QTLs identified previously and were named Lith20 (Chr 9, 44 cM, LOD=2.7) and Lith21 (Chr 10, 24 cM, LOD=2.9); one new, suggestive QTL (Chr 17) remains unnamed. Upon searching for epistatic interactions that contributed to gallstone susceptibility, the final suggestive QTL on Chr 7 was determined to interact significantly with Lith18 and, therefore, was named Lith22 (65 cM). A second interaction was identified between Lith19 and a locus on Chr 11; this QTL was named Lith23 (13 cM). mRNA expression analyses and amino acid haplotype analyses likely eliminated Slc10a2 as a candidate gene for Lith19. The QTLs identified herein largely contributed to gallstone formation rather than gallstone severity. Cloning the genes underlying these murine QTLs should facilitate prediction and cloning of the orthologous human genes.


Asunto(s)
Colelitiasis/química , Colelitiasis/genética , Colesterol/metabolismo , Sitios de Carácter Cuantitativo/fisiología , Animales , Cruzamientos Genéticos , Femenino , Masculino , Ratones , Ratones Endogámicos NZB/genética , Ratones Endogámicos/genética , Datos de Secuencia Molecular , Transportadores de Anión Orgánico Sodio-Dependiente/fisiología , Fenotipo , Simportadores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA